Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Interstitial and plasma adenosine stimulate nitric oxide and prostacyclin formation in human skeletal muscle

Research output: Contribution to journalJournal articleResearchpeer-review

  1. Antihypertensive Drugs and Risk of Depression: A Nationwide Population-Based Study

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Does Estimated Pulse Wave Velocity Add Prognostic Information? MORGAM Prospective Cohort Project

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Risk of Developing Hypokalemia in Patients With Hypertension Treated With Combination Antihypertensive Therapy

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Level of Physical Activity, Left Ventricular Mass, Hypertension, and Prognosis

    Research output: Contribution to journalJournal articleResearchpeer-review

  5. Dose-Response Association Between Level of Physical Activity and Mortality in Normal, Elevated, and High Blood Pressure

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Characteristics of patients with familial Mediterranean fever in Denmark: a retrospective nationwide register-based cohort study

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. The effect of two exercise modalities on skeletal muscle capillary ultrastructure in individuals with type 2 diabetes

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Reduced skeletal-muscle perfusion and impaired ATP release during hypoxia and exercise in individuals with type 2 diabetes

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Effect of endurance versus resistance training on local muscle and systemic inflammation and oxidative stress in COPD

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations
One major unresolved issue in muscle blood flow regulation is that of the role of circulating versus interstitial vasodilatory compounds. The present study determined adenosine-induced formation of NO and prostacyclin in the human muscle interstitium versus in femoral venous plasma to elucidate the interaction and importance of these vasodilators in the 2 compartments. To this end, we performed experiments on humans using microdialysis technique in skeletal muscle tissue, as well as the femoral vein, combined with experiments on cultures of microvascular endothelial versus skeletal muscle cells. In young healthy humans, microdialysate was collected at rest, during arterial infusion of adenosine, and during interstitial infusion of adenosine through microdialysis probes inserted into musculus vastus lateralis. Muscle interstitial NO and prostacyclin increased with arterial and interstitial infusion of adenosine. The addition of adenosine to skeletal muscle cells increased NO formation (fluorochrome 4-amino-5-methylamino-2',7-difluorescein fluorescence), whereas prostacyclin levels remained unchanged. The addition of adenosine to microvascular endothelial cells induced an increase in NO and prostacyclin levels. These findings provide novel insight into the role of adenosine in skeletal muscle blood flow regulation and vascular function by revealing that both interstitial and plasma adenosine have a stimulatory effect on NO and prostacyclin formation. In addition, both skeletal muscle and microvascular endothelial cells are potential mediators of adenosine-induced formation of NO in vivo, whereas only endothelial cells appear to play a role in adenosine-induced formation of prostacyclin.
Original languageEnglish
JournalHypertension
Volume56
Issue number6
Pages (from-to)1102-8
Number of pages7
ISSN0194-911X
DOIs
Publication statusPublished - 1 Dec 2010

ID: 32262829