TY - JOUR
T1 - Insulin-like growth factor-I predicts sinusoidal obstruction syndrome following pediatric hematopoietic stem cell transplantation
AU - Ebbesen, Maria
AU - Weischendorff, Sarah
AU - Kielsen, Katrine
AU - Kammersgaard, Marte
AU - Juul, Anders
AU - Müller, Klaus Gottlob
PY - 2021/5
Y1 - 2021/5
N2 - Sinusoidal obstruction syndrome (SOS) is a potentially fatal complication of hematopoietic stem cell transplantation (HSCT) initiated through damage of sinusoidal endothelium and inflammation. Insulin-like growth factor-l (IGF-l) maintains and repairs endothelium and intestinal mucosa. We hypothesized that low IGF-l levels may increase the risk of inflammatory complications, such as SOS, in HSCT-patients. We prospectively measured IGF-l concentrations in 121 pediatric patients before, during, and after allogeneic HSCT. Overall, IGF-l levels were significantly reduced compared with healthy sex- and age-matched children. IGF-I levels pre-HSCT and at day 0 were inversely associated with C-reactive protein levels, hyperbilirubinemia, and number of platelet transfusions within the first 21 days post-transplant. Low levels of IGF-I before conditioning and at day of transplant were associated with increased risk of SOS diagnosed by the modified Seattle criteria (pre-HSCT: OR = 1.7 (95% CI: 1.2-2.6, p = 0.01), and the pediatric EBMT criteria (pre-HSCT: 1.7 (1.2-2.5, p = 0.009) and day 0: 1.7 (1.3-2.5, p = 0.001)/SDS decrease in IGF-1). These data suggest that IGF-I is protective against cytotoxic damage and SOS, most likely through trophic effects on endothelial cells and anti-inflammatory properties, and may prove useful as a predictive biomarker of SOS.
AB - Sinusoidal obstruction syndrome (SOS) is a potentially fatal complication of hematopoietic stem cell transplantation (HSCT) initiated through damage of sinusoidal endothelium and inflammation. Insulin-like growth factor-l (IGF-l) maintains and repairs endothelium and intestinal mucosa. We hypothesized that low IGF-l levels may increase the risk of inflammatory complications, such as SOS, in HSCT-patients. We prospectively measured IGF-l concentrations in 121 pediatric patients before, during, and after allogeneic HSCT. Overall, IGF-l levels were significantly reduced compared with healthy sex- and age-matched children. IGF-I levels pre-HSCT and at day 0 were inversely associated with C-reactive protein levels, hyperbilirubinemia, and number of platelet transfusions within the first 21 days post-transplant. Low levels of IGF-I before conditioning and at day of transplant were associated with increased risk of SOS diagnosed by the modified Seattle criteria (pre-HSCT: OR = 1.7 (95% CI: 1.2-2.6, p = 0.01), and the pediatric EBMT criteria (pre-HSCT: 1.7 (1.2-2.5, p = 0.009) and day 0: 1.7 (1.3-2.5, p = 0.001)/SDS decrease in IGF-1). These data suggest that IGF-I is protective against cytotoxic damage and SOS, most likely through trophic effects on endothelial cells and anti-inflammatory properties, and may prove useful as a predictive biomarker of SOS.
UR - http://www.scopus.com/inward/record.url?scp=85096314494&partnerID=8YFLogxK
U2 - 10.1038/s41409-020-01127-3
DO - 10.1038/s41409-020-01127-3
M3 - Journal article
C2 - 33219341
SN - 0268-3369
VL - 56
SP - 1021
EP - 1030
JO - Bone Marrow Transplantation
JF - Bone Marrow Transplantation
IS - 5
ER -