Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Increased oral sodium chloride intake in humans amplifies selectively postprandial GLP-1 but not GIP, CCK, and gastrin in plasma

Research output: Contribution to journalJournal articleResearchpeer-review

DOI

  1. Gravity and lymphodynamics

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Spontaneous contractions of the human thoracic duct-Important for securing lymphatic return during positive pressure ventilation?

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Changes in P2Y6 receptor-mediated vasoreactivity following focal and global ischemia

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Reliability of cerebral autoregulation using different measures of perfusion pressure in patients with subarachnoid hemorrhage

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Quinine effects on gut and pancreatic hormones and antropyloroduodenal pressures in humans-role of delivery site and sex

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Influence of NAFLD and bariatric surgery on hepatic and adipose tissue mitochondrial biogenesis and respiration

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Randomized Controlled Trial of Tesomet for Weight Loss in Hypothalamic Obesity

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

Human studies have demonstrated that physiologically relevant changes in circulating glucagon-like peptide-1 (GLP-1) elicit a rapid increase in renal sodium excretion when combined with expansion of the extracellular fluid volume. Other studies support the involvement of various gastrointestinal hormones, e.g., gastrin and cholecystokinin (CCK) in a gut-kidney axis, responsible for a rapid-acting feed-forward natriuretic mechanism. This study was designed to investigate the hypothesis that the postprandial GLP-1 plasma concentration is sensitive to the sodium content in the meal. Under fixed sodium intake for 4 days prior to each experimental day, 10 lean healthy male participants were examined twice in random order after a 12-hr fasting period. Arterial blood samples were collected at 10-20-min intervals for 140 min after 75 grams of oral glucose + 6 grams of oral sodium chloride (NaCl) load versus 75 grams of glucose alone. Twenty-four-hour baseline urinary sodium excretions were similar between study days. Arterial GLP-1 levels increased during both oral glucose loads and were significantly higher at the 40-80 min period during glucose + NaCl compared to glucose alone. The postprandial arterial responses of CCK, gastrin, and glucose-dependent insulinotropic polypeptide as well as glucose, insulin, and C-peptide did not differ between the two study days. Arterial renin, aldosterone, and natriuretic peptides levels did not change within subjects or between study days. Angiotensin II levels were significantly lower at the time GLP-1 was higher (60-80 min) during glucose + NaCl. Sodium intake in addition to a glucose load selectively amplifies the postprandial GLP-1 plasma concentration. Thus, GLP-1 may be part of an acute feed-forward mechanism for natriuresis.

Original languageEnglish
Article numbere14519
JournalPhysiological Reports
Volume8
Issue number15
ISSN2051-817X
DOIs
Publication statusPublished - Aug 2020

ID: 60626419