Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

In vivo determination of T1 and T2 in the brain of patients with severe but stable multiple sclerosis.

Research output: Contribution to journalJournal articleResearch

  1. Quantification of cerebral perfusion and cerebrovascular reserve using Turbo-QUASAR arterial spin labeling MRI

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Coil profile estimation strategies for parallel imaging with hyperpolarized 13 C MRI

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Gamma-aminobutyric acid edited echo-planar spectroscopic imaging (EPSI) with MEGA-sLASER at 7T

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Comparison of prospective head motion correction with NMR field probes and an optical tracking system

    Research output: Contribution to journalJournal articleResearchpeer-review

  5. Improved calculation of the equilibrium magnetization of arterial blood in arterial spin labeling

    Research output: Contribution to journalJournal articleResearchpeer-review

  • H B Larsson
  • J Frederiksen
  • L Kjaer
  • O Henriksen
  • J Olesen
View graph of relations
In vivo measurements of relaxation processes in multiple sclerosis (MS) lesions by magnetic resonance imaging (MRI) may be important for evaluation of the disease activity in individual MS plaques. To obtain information of presumably chronic plaques, 10 patients with severe, but stable MS were investigated, using a whole-body superconductive MR scanner, operating at 1.5 T. By employing 12-point (or 6-point) partial saturation inversion recovery (PSIR) and 32-echo multiple spin-echo sequences we measured T1 and T2 in MS plaques, white matter, and cortical gray matter. We also focused on the issue, whether T1 and T2 relaxation processes in fact were monoexponential. T1 and T2 in plaques were found to cover a wide range, which could be explained only by inherent biophysical dissimilarity of the plaques, possibly due to differences in disease activity, edema and gliosis. T1 appeared monoexponential in all the plaques, but in seven cases T2 showed biexponential behavior. This was found to be most pronounced near the cerebrospinal fluid of the ventricles, probably caused by partial volume effects or increased free water content. The T2 of apparently normal white matter was significantly longer in MS patients than in healthy subjects.
Translated title of the contributionIn vivo determination of T1 and T2 in the brain of patients with severe but stable multiple sclerosis.
Original languageEnglish
JournalMagnetic Resonance in Medicine
Volume7
Issue number1
Pages (from-to)43-55
Number of pages13
ISSN0740-3194
Publication statusPublished - 1988

ID: 32495109