Improve: a feature model to predict neoepitope immunogenicity through broad-scale validation of T-cell recognition

Annie Borch, Ibel Carri, Birkir Reynisson, Heli M Garcia Alvarez, Kamilla K Munk, Alessandro Montemurro, Nikolaj Pagh Kristensen, Siri A Tvingsholm, Jeppe Sejerø Holm, Christina Heeke, Keith Henry Moss, Ulla Kring Hansen, Anna-Lisa Schaap-Johansen, Frederik Otzen Bagger, Vinicius Araujo Barbosa de Lima, Kristoffer S Rohrberg, Samuel A Funt, Marco Donia, Inge Marie Svane, Ulrik LassenCarolina Barra, Morten Nielsen, Sine Reker Hadrup*

*Corresponding author for this work

Abstract

BACKGROUND: Mutation-derived neoantigens are critical targets for tumor rejection in cancer immunotherapy, and better tools for neoepitope identification and prediction are needed to improve neoepitope targeting strategies. Computational tools have enabled the identification of patient-specific neoantigen candidates from sequencing data, but limited data availability has hindered their capacity to predict which of the many neoepitopes will most likely give rise to T cell recognition.

METHOD: To address this, we make use of experimentally validated T cell recognition towards 17,500 neoepitope candidates, with 467 being T cell recognized, across 70 cancer patients undergoing immunotherapy.

RESULTS: We evaluated 27 neoepitope characteristics, and created a random forest model, IMPROVE, to predict neoepitope immunogenicity. The presence of hydrophobic and aromatic residues in the peptide binding core were the most important features for predicting neoepitope immunogenicity.

CONCLUSION: Overall, IMPROVE was found to significantly advance the identification of neoepitopes compared to other current methods.

Original languageEnglish
Article number1360281
JournalFrontiers in Immunology
Volume15
ISSN1664-3224
DOIs
Publication statusPublished - 2024

Keywords

  • Humans
  • T-Lymphocytes
  • Neoplasms
  • Immunotherapy/methods
  • neoantigen
  • immunotherapy
  • immunoinformatics
  • neoepitope prediction
  • machine learning

Fingerprint

Dive into the research topics of 'Improve: a feature model to predict neoepitope immunogenicity through broad-scale validation of T-cell recognition'. Together they form a unique fingerprint.

Cite this