Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

A method for detecting IBD regions simultaneously in multiple individuals--with applications to disease genetics

Research output: Contribution to journalJournal articleResearchpeer-review

DOI

  1. Shared heritability and functional enrichment across six solid cancers

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Detection of PMS2 Mutations by Screening Hereditary Nonpolyposis Colon Cancer Families from Denmark and Sweden

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Completeness of RET testing in patients with medullary thyroid carcinoma in Denmark 1997-2013: a nationwide study

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Replication of newly proposed TNM staging system for medullary thyroid carcinoma: a nationwide study

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations
All individuals in a finite population are related if traced back long enough and will, therefore, share regions of their genomes identical by descent (IBD). Detection of such regions has several important applications-from answering questions about human evolution to locating regions in the human genome containing disease-causing variants. However, IBD regions can be difficult to detect, especially in the common case where no pedigree information is available. In particular, all existing non-pedigree based methods can only infer IBD sharing between two individuals. Here, we present a new Markov Chain Monte Carlo method for detection of IBD regions, which does not rely on any pedigree information. It is based on a probabilistic model applicable to unphased SNP data. It can take inbreeding, allele frequencies, genotyping errors, and genomic distances into account. And most importantly, it can simultaneously infer IBD sharing among multiple individuals. Through simulations, we show that the simultaneous modeling of multiple individuals makes the method more powerful and accurate than several other non-pedigree based methods. We illustrate the potential of the method by applying it to data from individuals with breast and/or ovarian cancer, and show that a known disease-causing mutation can be mapped to a 2.2-Mb region using SNP data from only five seemingly unrelated affected individuals. This would not be possible using classical linkage mapping or association mapping.
Original languageEnglish
JournalInternational Journal of Genome Research
Volume21
Issue number7
Pages (from-to)1168-80
Number of pages13
ISSN0218-1932
DOIs
Publication statusPublished - 2011

    Research areas

  • Alleles, Breast Neoplasms, Chromosome Mapping, Computer Simulation, Databases, Genetic, Female, Genetic Linkage, Genome, Human, Genome-Wide Association Study, Genotype, Humans, Markov Chains, Models, Genetic, Monte Carlo Method, Mutation, Ovarian Neoplasms, Pedigree, Polymorphism, Single Nucleotide, Ubiquitin-Protein Ligases

ID: 33165623