Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Finite element analysis of tibial fractures

Research output: Contribution to journalJournal articleResearchpeer-review

  1. Sepsis-related Organ Failure Assessment Score is a strong predictor of survival in acute-on-chronic liver failure

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Prevention of parastomal hernia using mesh in patients undergoing rectum extirpation

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Temporal trends in length of stay and readmissions after fast-track hip and knee arthroplasty

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Successful performance of pediatric renography does not require sedation

    Research output: Contribution to journalJournal articleResearchpeer-review

  5. Hydrochloric acid prolongs the lifetime of central venous catheters in haematologic patients with bacteraemia

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. The effects of rotation on radiological parameters in the spine

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Sequence variants in muscle tissue-related genes may determine the severity of muscle contractures in cerebral palsy

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Analgesic Effects of Botulinum Toxin in Children with CP

    Research output: Contribution to journalReviewResearchpeer-review

View graph of relations
INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element analysis of the bones of the lower leg to examine if such a model is adequate for prediction of fracture locations and patterns. In future studies, we aim to use these biomechanical results to examine fracture prevention, among others, and to simulate different types of osteosynthesis and the process of bony healing. The biomechanical results are the basis for fracture healing, biomechanical fall analysis and stability analysis of osteosynthesis. MATERIAL AND METHODS: A finite element model of the bony part of the lower leg was generated on the basis of computed tomography data from the Visible Human Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied. RESULTS: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant fracture patterns. CONCLUSION: In the present study, we have successfully simulated fracture mechanisms, obtained adequate fracture locations and achieved an indication of the fracture morphology. The method of fracture simulation employed showed good agreement with known clinical data and data from prior mechanical testing. This substantiates the validity of fracture simulation for future studies examining tibial fractures, fracture healing and prevention.
Original languageEnglish
JournalDanish Medical Bulletin (Online)
Volume57
Issue number5
Pages (from-to)A4148
ISSN1603-9629
Publication statusPublished - 1 May 2010

ID: 30981500