Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Glycogen supercompensation is due to increased number, not size, of glycogen particles in human skeletal muscle

Research output: Contribution to journalJournal articleResearchpeer-review

DOI

  1. Human immune cell mobilization during exercise: effect of IL-6 receptor blockade

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. A method for modelling the oxyhaemoglobin dissociation curve at the level of the cerebral capillary in humans

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. To survive a dive; cerebral oxygen delivery and our aquatic heritage

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Cardiac output during exercise is related to plasma atrial natriuretic peptide but not to central venous pressure in humans

    Research output: Contribution to journalJournal articleResearchpeer-review

  5. Sexual dimorphism of substrate utilization: Differences in skeletal muscle mitochondrial volume density and function

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Blocking endogenous IL-6 impairs mobilization of free fatty acids during rest and exercise in lean and obese men

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Neprilysin inhibition increases glucagon levels in humans and mice with potential effects on amino acid metabolism

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. The regulation of circulating hepatokines by fructose ingestion in humans

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Quantification of biotin in plasma samples by column switching liquid chromatography - tandem mass spectrometry

    Research output: Contribution to journalJournal articleResearchpeer-review

  5. Heterogeneity in subcellular muscle glycogen utilisation during exercise impacts endurance capacity in men

    Research output: Contribution to journalJournal articleResearchpeer-review

  • Rasmus Jensen
  • Niels Ørtenblad
  • Marie-Louise H Stausholm
  • Mette C Skjaerbaek
  • Daniel N Larsen
  • Mette Hansen
  • Hans-Christer Holmberg
  • Peter Plomgaard
  • Joachim Nielsen
View graph of relations

NEW FINDINGS: What is the central question of this study? Glycogen supercompensation after glycogen-depleting exercise can be achieved by consuming a carbohydrate-enriched diet, but the associated effects on the size, number and localization of intramuscular glycogen particles are unknown. What is the main finding and its importance? Using transmission electron microscopy to inspect individual glycogen particles visually, we show that glycogen supercompensation is achieved by increasing the number of particles while keeping them at submaximal sizes. This might be a strategy to ensure that glycogen particles can be used fast, because particles that are too large might impair utilization rate.

ABSTRACT: Glycogen supercompensation after glycogen-depleting exercise can be achieved by consuming a carbohydrate-enriched diet, but the associated effects on the size, number and localization of intramuscular glycogen particles are unknown. We investigated how a glycogen-loading protocol affects fibre type-specific glycogen volume density, particle diameter and numerical density in three subcellular pools: between (intermyofibrillar) or within (intramyofibrillar) the myofibrils or beneath the sarcolemma (subsarcolemmal). Resting muscle biopsies from 11 physically active men were analysed using transmission electron microscopy after mixed (MIX), LOW or HIGH carbohydrate consumption separated by glycogen-lowering cycling at 75% of maximal oxygen consumption until exhaustion. After HIGH, the total volumetric glycogen content was 40% [95% confidence interval 16, 68] higher than after MIX in type I fibres (P < 0.001), with little to no difference in type II fibres (9% [95% confidence interval -9, 27]). Median particle diameter was 22.5 (interquartile range 20.8-24.7) nm across glycogen pools and fibre types, and the numerical density was 61% [25, 107] and 40% [9, 80] higher in the subsarcolemmal (P < 0.001) and intermyofibrillar (P < 0.01) pools of type I fibres, respectively, with little to no difference in the intramyofibrillar pool (3% [-20, 32]). In LOW, total glycogen was in the range of 21-23% lower, relative to MIX, in both fibre types, reflected in a 21-46% lower numerical density across pools. In comparison to MIX, particle diameter was unaffected by other diets ([-1.4, 1.3] nm). In conclusion, glycogen supercompensation after prolonged cycling is exclusive to type I fibres, predominantly in the subsarcolemmal pool, and involves an increase in the numerical density rather than the size of existing glycogen particles.

Original languageEnglish
JournalExperimental Physiology
Volume106
Issue number5
Pages (from-to)1272-1284
Number of pages13
ISSN0958-0670
DOIs
Publication statusPublished - May 2021

    Research areas

  • carbohydrate, compartmentalization, diet, glycogen loading, transmission electron microscopy

ID: 65794832