Glucagon-to-insulin ratio is pivotal for splanchnic regulation of FGF-21 in humans

Jakob Schiøler Hansen, Jens Otto Clemmesen, Niels Henry Secher, Miriam Hoene, Andrea Drescher, Cora Weigert, Bente Klarlund Pedersen, Peter Plomgaard

103 Citations (Scopus)

Abstract

BACKGROUND & AIMS: Fibroblast growth factor 21 (FGF-21) is a liver-derived metabolic regulator induced by energy deprivation. However, its regulation in humans is incompletely understood. We addressed the origin and regulation of FGF-21 secretion in humans.

METHODS: By determination of arterial-to-venous differences over the liver and the leg during exercise, we evaluated the organ-specific secretion of FGF-21 in humans. By four different infusion models manipulating circulating glucagon and insulin, we addressed the interaction of these hormones on FGF-21 secretion in humans.

RESULTS: We demonstrate that the splanchnic circulation secretes FGF-21 at rest and that it is rapidly enhanced during exercise. In contrast, the leg does not contribute to the systemic levels of FGF-21. To unravel the mechanisms underlying the regulation of exercise-induced hepatic release of FGF-21, we manipulated circulating glucagon and insulin. These studies demonstrated that in humans glucagon stimulates splanchnic FGF-21 secretion whereas insulin has an inhibitory effect.

CONCLUSIONS: Collectively, our data reveal that 1) in humans, the splanchnic bed contributes to the systemic FGF-21 levels during rest and exercise; 2) under normo-physiological conditions FGF-21 is not released from the leg; 3) a dynamic interaction of glucagon-to-insulin ratio regulates FGF-21 secretion in humans.

Original languageEnglish
JournalMolecular Metabolism
Volume4
Issue number8
Pages (from-to)551-60
Number of pages10
DOIs
Publication statusPublished - Aug 2015

Fingerprint

Dive into the research topics of 'Glucagon-to-insulin ratio is pivotal for splanchnic regulation of FGF-21 in humans'. Together they form a unique fingerprint.

Cite this