Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Getting to grips with endoscopy - Learning endoscopic surgical skills induces bi-hemispheric plasticity of the grasping network

Research output: Contribution to journalJournal articleResearchpeer-review

  1. Value and limitations of intracranial recordings for validating electric field modeling for transcranial brain stimulation

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. The structure of the serotonin system: A PET imaging study

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Validation of structural brain connectivity networks: The impact of scanning parameters

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Accessibility of cortical regions to focal TES: Dependence on spatial position, safety, and practical constraints

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Probing Context-Dependent Modulations of Ipsilateral Premotor-Motor Connectivity in Relapsing-Remitting Multiple Sclerosis

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Value and limitations of intracranial recordings for validating electric field modeling for transcranial brain stimulation

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

Endoscopic surgery requires skilled bimanual use of complex instruments that extend the peri-personal workspace. To delineate brain structures involved in learning such surgical skills, 48 medical students without surgical experience were randomly assigned to five training sessions on a virtual-reality endoscopy simulator or to a non-training group. Brain activity was probed with functional MRI while participants performed endoscopic tasks. Repeated task performance in the scanner was sufficient to enhance task-related activity in left ventral premotor cortex (PMv) and the anterior Intraparietal Sulcus (aIPS). Simulator training induced additional increases in task-related activation in right PMv and aIPS and reduced effective connectivity from left to right PMv. Skill improvement after training scaled with stronger task-related activation of the lateral left primary motor hand area (M1-HAND). The results suggest that a bilateral fronto-parietal grasping network and left M1-HAND are engaged in bimanual learning of tool-based manipulations in an extended peri-personal space.

Original languageEnglish
JournalNeuroImage
Volume189
Pages (from-to)32-44
Number of pages13
ISSN1053-8119
DOIs
Publication statusPublished - 1 Apr 2019

    Research areas

  • Bimanual skill learning, Endoscopic surgery, Fronto-parietal grasping network

ID: 55904432