Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Genetic Influences on Pulmonary Function: A Large Sample Twin Study

Research output: Contribution to journalJournal articleResearchpeer-review

  1. The Effect of Different Comorbidities on Survival of Non-small Cells Lung Cancer Patients

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Risk of chronic bronchitis in twin pairs discordant for smoking

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Downregulation of aquaporin-1 in alveolar microvessels in lungs adapted to chronic heart failure

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Prognosis of COPD depends on severity of exacerbation history: A population-based analysis

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Exposure to Vitamin D Fortification Policy in Prenatal Life and the Risk of Childhood Asthma: Results From the D-Tect Study

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. A systematic review of surgical treatment for supraglottic exercise-induced laryngeal obstruction

    Research output: Contribution to journalReviewResearchpeer-review

View graph of relations
Heritability of forced expiratory volume in one second (FEV(1)), forced vital capacity (FVC), and peak expiratory flow (PEF) has not been previously addressed in large twin studies. We evaluated the genetic contribution to individual differences observed in FEV(1), FVC, and PEF using data from the largest population-based twin study on spirometry. Specially trained lay interviewers with previous experience in spirometric measurements tested 4,314 Danish twins (individuals), 46-68 years of age, in their homes using a hand-held spirometer, and their flow-volume curves were evaluated. Modern variance component sex-limitation models were applied to evaluate possible genetic differences between the sexes for FEV(1), FVC, and PEF. Estimates were adjusted for age, height, and smoking. For FEV(1), additive genetic effects of 61% (95% CI 56-65) were observed. For FVC, the additive genetic contribution was 26% (3-49%) and the dominant genetic contribution was 29% (4-54%). For PEF, our models showed an additive genetic contribution of 43% (31-52%) for men, but genetic influences were not significant in women. We found no significant differences between dizygotic same-sex twins and dizygotic opposite-sex twins for FEV(1), FVC, and PEF, suggesting absence of qualitative genetic differences between the sexes. Sex-difference heritability for PEF suggested possible quantitative genetic differences between the sexes for this index. Genetic effects contributed significantly to individual differences observed in FEV(1), FVC, and PEF. Qualitative sex differences were absent for all spirometric measures, while quantitative sex differences were observed only for PEF, with heritability being substantial in men but negligible in women.
Original languageEnglish
JournalLung
Volume189
Issue number4
Pages (from-to)323-330
ISSN0341-2040
DOIs
Publication statusPublished - 10 Jun 2011

ID: 32359620