Abstract
The hypothesis that natriuresis can be induced by stimulation of gastrointestinal osmoreceptors was tested in eight supine subjects on constant sodium intake (150 mmol NaCl/day). A sodium load equivalent to the amount contained in 10% of measured extracellular volume was administered by a nasogastric tube as isotonic or hypertonic saline (850 mM). In additional experiments, salt loading was replaced by oral water loading (3.5% of total body water). Plasma sodium concentration increased after hypertonic saline (+3.1 +/- 0.7 mM), decreased after water loading (-3.8 +/- 0.8 mM), and remained unchanged after isotonic saline. Oncotic pressure decreased by 9.4 +/- 1.2, 3.7 +/- 1.2, and 10.7 +/- 1.3%, respectively. Isotonic saline induced an increase in renal sodium excretion (104 +/- 15 to 406 +/- 39 micromol/min) that was larger than seen with hypertonic saline (85 +/- 15 to 325 +/- 39 micromol/min) and water loading (88 +/- 11 to 304 +/- 28 micromol/min). Plasma ANG II decreased to 22 +/- 6, 35 +/- 6, and 47 +/- 5% of baseline after isotonic saline, hypertonic saline, and water loading, respectively. Plasma atrial natriuretic peptide (ANP) concentrations and urinary excretion rates of endothelin-1 were unchanged. In conclusion, stimulation of osmoreceptors by intragastric infusion of hypertonic saline is not an important natriuretic stimulus in sodium-replete subjects. The natriuresis after intragastric salt loading was independent of ANP but can be explained by inhibition of the renin-angiotensin system.
Original language | English |
---|---|
Journal | American journal of physiology. Regulatory, integrative and comparative physiology |
Volume | 278 |
Issue number | 2 |
Pages (from-to) | R287-94 |
ISSN | 0363-6119 |
Publication status | Published - Feb 2000 |
Keywords
- Adult
- Angiotensin II
- Atrial Natriuretic Factor
- Digestive System Physiological Phenomena
- Drinking
- Endothelin-1
- Humans
- Intubation, Gastrointestinal
- Isotonic Solutions
- Kidney
- Male
- Saline Solution, Hypertonic
- Sodium
- Sodium Chloride
- Water-Electrolyte Balance