TY - JOUR
T1 - First-in-Human Study of [68Ga]Ga-NODAGA-E[c(RGDyK)]2 PET for Integrin αvβ3 Imaging in Patients with Breast Cancer and Neuroendocrine Neoplasms
T2 - Safety, Dosimetry and Tumor Imaging Ability
AU - Clausen, Malene Martini
AU - Carlsen, Esben Andreas
AU - Christensen, Camilla
AU - Madsen, Jacob
AU - Brandt-Larsen, Malene
AU - Klausen, Thomas Levin
AU - Holm, Søren
AU - Loft, Annika
AU - Berthelsen, Anne Kiil
AU - Kroman, Niels
AU - Knigge, Ulrich
AU - Kjaer, Andreas
PY - 2022/3/30
Y1 - 2022/3/30
N2 - Arginine-Glycine-Aspartate (RGD)-recognizing cell surface integrins are involved in tumor growth, invasiveness/metastases, and angiogenesis, and are therefore an attractive treatment target in cancers. The subtype integrin αvβ3 is upregulated on endothelial cells during angiogenesis and on tumor cells. In vivo assessment of integrin αvβ3 is possible with positron emission tomography (PET). Preclinical data on radiochemical properties, tumor uptake and radiation exposure identified [68Ga]Ga-NODAGA-E[c(RGDyK)]2 as a promising candidate for clinical translation. In this first-in-human phase I study, we evaluate [68Ga]Ga-NODAGA-E[c(RGDyK)]2 PET in patients with neuroendocrine neoplasms (NEN) and breast cancer (BC). The aim was to investigate safety, biodistribution and dosimetry as well as tracer uptake in tumor lesions. A total of 10 patients (5 breast cancer, 5 neuroendocrine neoplasm) received a single intravenous dose of approximately 200 MBq [68Ga]Ga-NODAGA-E[c(RGDyK)]2. Biodistribution profile and dosimetry were assessed by whole-body PET/CT performed at 10 min, 1 h and 2 h after injection. Safety assessment with vital parameters, electrocardiograms and blood tests were performed before and after injection. In vivo stability of [68Ga]Ga-NODAGA-E[c(RGDyK)]2 was determined by analysis of blood and urine. PET images were analyzed for tracer uptake in tumors and background organs. No adverse events or pharmacologic effects were observed in the 10 patients. [68Ga]Ga-NODAGA-E[c(RGDyK)]2 exhibited good in vivo stability and fast clearance, primarily by renal excretion. The effective dose was 0.022 mSv/MBq, equaling a radiation exposure of 4.4 mSv at an injected activity of 200 MBq. The tracer demonstrated stable tumor retention and good image contrast. In conclusion, this first-in-human phase I trial demonstrated safe use of [68Ga]Ga-NODAGA-E[c(RGDyK)]2 for integrin αvβ3 imaging in cancer patients, low radiation exposure and favorable uptake in tumors. Further studies are warranted to establish whether [68Ga]Ga-NODAGA-E[c(RGDyK)]2 may become a tool for early identification of patients eligible for treatments targeting integrin αvβ3 and for risk stratification of patients.
AB - Arginine-Glycine-Aspartate (RGD)-recognizing cell surface integrins are involved in tumor growth, invasiveness/metastases, and angiogenesis, and are therefore an attractive treatment target in cancers. The subtype integrin αvβ3 is upregulated on endothelial cells during angiogenesis and on tumor cells. In vivo assessment of integrin αvβ3 is possible with positron emission tomography (PET). Preclinical data on radiochemical properties, tumor uptake and radiation exposure identified [68Ga]Ga-NODAGA-E[c(RGDyK)]2 as a promising candidate for clinical translation. In this first-in-human phase I study, we evaluate [68Ga]Ga-NODAGA-E[c(RGDyK)]2 PET in patients with neuroendocrine neoplasms (NEN) and breast cancer (BC). The aim was to investigate safety, biodistribution and dosimetry as well as tracer uptake in tumor lesions. A total of 10 patients (5 breast cancer, 5 neuroendocrine neoplasm) received a single intravenous dose of approximately 200 MBq [68Ga]Ga-NODAGA-E[c(RGDyK)]2. Biodistribution profile and dosimetry were assessed by whole-body PET/CT performed at 10 min, 1 h and 2 h after injection. Safety assessment with vital parameters, electrocardiograms and blood tests were performed before and after injection. In vivo stability of [68Ga]Ga-NODAGA-E[c(RGDyK)]2 was determined by analysis of blood and urine. PET images were analyzed for tracer uptake in tumors and background organs. No adverse events or pharmacologic effects were observed in the 10 patients. [68Ga]Ga-NODAGA-E[c(RGDyK)]2 exhibited good in vivo stability and fast clearance, primarily by renal excretion. The effective dose was 0.022 mSv/MBq, equaling a radiation exposure of 4.4 mSv at an injected activity of 200 MBq. The tracer demonstrated stable tumor retention and good image contrast. In conclusion, this first-in-human phase I trial demonstrated safe use of [68Ga]Ga-NODAGA-E[c(RGDyK)]2 for integrin αvβ3 imaging in cancer patients, low radiation exposure and favorable uptake in tumors. Further studies are warranted to establish whether [68Ga]Ga-NODAGA-E[c(RGDyK)]2 may become a tool for early identification of patients eligible for treatments targeting integrin αvβ3 and for risk stratification of patients.
KW - first in human
KW - PET
KW - RGD
KW - breast cancer
KW - neuroendocrine neoplasm
KW - alphavbeta3 integrin
UR - http://www.scopus.com/inward/record.url?scp=85128529573&partnerID=8YFLogxK
U2 - 10.3390/diagnostics12040851
DO - 10.3390/diagnostics12040851
M3 - Journal article
C2 - 35453899
VL - 12
JO - Diagnostics
JF - Diagnostics
SN - 2075-4418
IS - 4
M1 - 851
ER -