Abstract
Neurophysiological markers of the central control of gait in children with cerebral palsy (CP) are used to assess developmental response to therapy. We measured the central common drive to a leg muscle in children with CP. We recorded electromyograms (EMGs) from the tibialis anterior (TA) muscle of 40 children with hemiplegic CP and 42 typically developing age-matched controls during static dorsiflexion of the ankle and during the swing phase of treadmill walking. The common drive to TA motoneurons was identified through time- and frequency-domain cross-correlation methods. In control subjects, the common drive consists of frequencies between 1 and 60 Hz with peaks at beta (15-25 Hz) and gamma (30-45 Hz) frequencies known to be caused by activity within sensorimotor cortex networks: this drive to motoneurons strengthens during childhood. Similar to this drive in control subjects, this drive to the least affected TA in the CP children tended to strengthen with age, although compared with that in the control subjects, it was slightly weaker. For CP subjects of all ages, the most affected TA muscle common drive was markedly reduced compared with that of their least affected muscle as well as that of controls. These differences between the least and most affected TA muscles were unrelated to differences in the magnitude of EMG in the two muscles but positively correlated with ankle dorsiflexion velocity and joint angle during gait. Time- and frequency-domain analysis of ongoing EMG recruited during behaviorally relevant lower limb tasks provides a noninvasive and important measure of the central drive to motoneurons in subjects with CP.
Original language | English |
---|---|
Journal | Journal of Neurophysiology |
Volume | 109 |
Issue number | 3 |
Pages (from-to) | 625-39 |
Number of pages | 15 |
ISSN | 0022-3077 |
DOIs | |
Publication status | Published - 2013 |