TY - JOUR
T1 - F-18-FLT PET/CT Adds Value to F-18-FDG PET/CT for Diagnosing Relapse After Definitive Radiotherapy in Patients with Lung Cancer: Results of a Prospective Clinical Trial
AU - Christensen, Tine Noehr
AU - Langer, Seppo W
AU - Persson, Gitte F
AU - Larsen, Klaus Richter
AU - Loft, Annika
AU - Amtoft, Annemarie Gjelstrup
AU - Berthelsen, Anne Kiil
AU - Johannesen, Helle Hjorth
AU - Keller, Sune Hoegild
AU - Kjaer, Andreas
AU - Fischer, Barbara Malene
N1 - Copyright © 2020 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
PY - 2021/5/10
Y1 - 2021/5/10
N2 - Diagnosing relapse after radiotherapy for lung cancer is challenging. The specificity of both CT and 18F-FDG PET/CT is low because of radiation-induced changes. 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) PET has previously demonstrated higher specificity for malignancy than 18F-FDG PET. We investigated the value of 18F-FLT PET/CT for diagnosing relapse in irradiated lung cancer. Methods: Patients suspected of relapse of lung cancer after definitive radiotherapy (conventional fractionated radiotherapy [cRT] or stereotactic body radiotherapy [SBRT]) were included. Sensitivity and specificity were analyzed both within the irradiated high-dose volume (HDV) and on a patient basis. Marginal differences and interobserver agreement were assessed. Results: Sixty-three patients who had received radiotherapy in 70 HDVs (34 cRT; 36 SBRT) were included. The specificity of 18F-FLT PET/CT was higher than that of 18F-FDG PET/CT (HDV, 96% [95% CI, 87-100] vs. 71% [95% CI, 57-83] [P = 0.0039]; patient-based, 90% [95% CI, 73-98] vs. 55% [95% CI, 36-74] [P = 0.0020]). The difference in specificity between 18F-FLT PET/CT and 18F-FDG PET/CT was higher after cRT than after SBRT. The sensitivity of 18F-FLT PET/CT was lower than that of 18F-FDG PET/CT (HDV, 69% [95% CI, 41-89] vs. 94% [95% CI, 70-100] [P = 0.1250]; patient-based, 70% [95% CI, 51-84] vs. 94% [95% CI, 80-99] [P = 0.0078]). Adding 18F-FLT PET/CT when 18F-FDG PET/CT was positive or inconclusive improved the diagnostic value compared with 18F-FDG PET/CT alone. In cRT HDVs, the probability of malignancy increased from 67% for 18F-FDG PET/CT alone to 100% when both tracers were positive. Conclusion: 18F-FLT PET/CT adds diagnostic value to 18F-FDG PET/CT in patients with suspected relapse. The diagnostic impact of 18F-FLT PET/CT was highest after cRT. We suggest adding 18F-FLT PET/CT when 18F-FDG PET/CT is inconclusive or positive within the previously irradiated volume to improve diagnostic value in patients for whom histologic confirmation is not easily obtained.
AB - Diagnosing relapse after radiotherapy for lung cancer is challenging. The specificity of both CT and 18F-FDG PET/CT is low because of radiation-induced changes. 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) PET has previously demonstrated higher specificity for malignancy than 18F-FDG PET. We investigated the value of 18F-FLT PET/CT for diagnosing relapse in irradiated lung cancer. Methods: Patients suspected of relapse of lung cancer after definitive radiotherapy (conventional fractionated radiotherapy [cRT] or stereotactic body radiotherapy [SBRT]) were included. Sensitivity and specificity were analyzed both within the irradiated high-dose volume (HDV) and on a patient basis. Marginal differences and interobserver agreement were assessed. Results: Sixty-three patients who had received radiotherapy in 70 HDVs (34 cRT; 36 SBRT) were included. The specificity of 18F-FLT PET/CT was higher than that of 18F-FDG PET/CT (HDV, 96% [95% CI, 87-100] vs. 71% [95% CI, 57-83] [P = 0.0039]; patient-based, 90% [95% CI, 73-98] vs. 55% [95% CI, 36-74] [P = 0.0020]). The difference in specificity between 18F-FLT PET/CT and 18F-FDG PET/CT was higher after cRT than after SBRT. The sensitivity of 18F-FLT PET/CT was lower than that of 18F-FDG PET/CT (HDV, 69% [95% CI, 41-89] vs. 94% [95% CI, 70-100] [P = 0.1250]; patient-based, 70% [95% CI, 51-84] vs. 94% [95% CI, 80-99] [P = 0.0078]). Adding 18F-FLT PET/CT when 18F-FDG PET/CT was positive or inconclusive improved the diagnostic value compared with 18F-FDG PET/CT alone. In cRT HDVs, the probability of malignancy increased from 67% for 18F-FDG PET/CT alone to 100% when both tracers were positive. Conclusion: 18F-FLT PET/CT adds diagnostic value to 18F-FDG PET/CT in patients with suspected relapse. The diagnostic impact of 18F-FLT PET/CT was highest after cRT. We suggest adding 18F-FLT PET/CT when 18F-FDG PET/CT is inconclusive or positive within the previously irradiated volume to improve diagnostic value in patients for whom histologic confirmation is not easily obtained.
KW - Adult
KW - Aged
KW - Dideoxynucleosides
KW - Female
KW - Fluorodeoxyglucose F18
KW - Humans
KW - Lung Neoplasms/diagnostic imaging
KW - Male
KW - Middle Aged
KW - Positron Emission Tomography Computed Tomography
KW - Prospective Studies
KW - Recurrence
KW - Treatment Outcome
KW - relapse
KW - 18F-FLT PET/CT
KW - lung cancer
KW - 18F-FDG PET/CT
KW - radiotherapy
UR - http://www.scopus.com/inward/record.url?scp=85106540676&partnerID=8YFLogxK
U2 - 10.2967/jnumed.120.247742
DO - 10.2967/jnumed.120.247742
M3 - Journal article
C2 - 33037090
SN - 0161-5505
VL - 62
SP - 628
EP - 635
JO - Journal of nuclear medicine : official publication, Society of Nuclear Medicine
JF - Journal of nuclear medicine : official publication, Society of Nuclear Medicine
IS - 5
ER -