Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Estimating Effect Sizes and Expected Replication Probabilities from GWAS Summary Statistics

Research output: Contribution to journalJournal articleResearchpeer-review

DOI

  1. Polygenic Heterogeneity Across Obsessive-Compulsive Disorder Subgroups Defined by a Comorbid Diagnosis

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. A Dual Systems Genetics Approach Identifies Common Genes, Networks, and Pathways for Type 1 and 2 Diabetes in Human Islets

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Mutation Load of Single, Large-Scale Deletions of mtDNA in Mitotic and Postmitotic Tissues

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. New Pathogenic Germline Variants in Very Early Onset and Familial Colorectal Cancer Patients

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Risk variants and polygenic architecture of disruptive behavior disorders in the context of attention-deficit/hyperactivity disorder

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Associations between patterns in comorbid diagnostic trajectories of individuals with schizophrenia and etiological factors

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Pleiotropy between language impairment and broader behavioral disorders-an investigation of both common and rare genetic variants

    Research output: Contribution to journalJournal articleResearchpeer-review

  • Dominic Holland
  • Yunpeng Wang
  • Wesley K Thompson
  • Andrew Schork
  • Chi-Hua Chen
  • Min-Tzu Lo
  • Aree Witoelar
  • Thomas Werge
  • Michael O'Donovan
  • Ole A Andreassen
  • Anders M Dale
  • Schizophrenia Working Group of the Psychiatric Genomics Consortium
View graph of relations

Genome-wide Association Studies (GWAS) result in millions of summary statistics ("z-scores") for single nucleotide polymorphism (SNP) associations with phenotypes. These rich datasets afford deep insights into the nature and extent of genetic contributions to complex phenotypes such as psychiatric disorders, which are understood to have substantial genetic components that arise from very large numbers of SNPs. The complexity of the datasets, however, poses a significant challenge to maximizing their utility. This is reflected in a need for better understanding the landscape of z-scores, as such knowledge would enhance causal SNP and gene discovery, help elucidate mechanistic pathways, and inform future study design. Here we present a parsimonious methodology for modeling effect sizes and replication probabilities, relying only on summary statistics from GWAS substudies, and a scheme allowing for direct empirical validation. We show that modeling z-scores as a mixture of Gaussians is conceptually appropriate, in particular taking into account ubiquitous non-null effects that are likely in the datasets due to weak linkage disequilibrium with causal SNPs. The four-parameter model allows for estimating the degree of polygenicity of the phenotype and predicting the proportion of chip heritability explainable by genome-wide significant SNPs in future studies with larger sample sizes. We apply the model to recent GWAS of schizophrenia (N = 82,315) and putamen volume (N = 12,596), with approximately 9.3 million SNP z-scores in both cases. We show that, over a broad range of z-scores and sample sizes, the model accurately predicts expectation estimates of true effect sizes and replication probabilities in multistage GWAS designs. We assess the degree to which effect sizes are over-estimated when based on linear-regression association coefficients. We estimate the polygenicity of schizophrenia to be 0.037 and the putamen to be 0.001, while the respective sample sizes required to approach fully explaining the chip heritability are 10(6) and 10(5). The model can be extended to incorporate prior knowledge such as pleiotropy and SNP annotation. The current findings suggest that the model is applicable to a broad array of complex phenotypes and will enhance understanding of their genetic architectures.

Original languageEnglish
JournalFrontiers in genetics
Volume7
Pages (from-to)15
ISSN1664-8021
DOIs
Publication statusPublished - 16 Feb 2016

ID: 46286682