Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Effective photo-enhancement of cellular activity of fluorophore-octaarginine antisense PNA conjugates correlates with singlet oxygen formation, endosomal escape and chromophore lipophilicity

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

APA

CBE

MLA

Vancouver

Author

Bibtex

@article{34b375e210d8497e9b4a2751783a5c0b,
title = "Effective photo-enhancement of cellular activity of fluorophore-octaarginine antisense PNA conjugates correlates with singlet oxygen formation, endosomal escape and chromophore lipophilicity",
abstract = "Photochemical internalization (PCI) is a cellular drug delivery method based on the generation of light-induced reactive oxygen species (ROS) causing damage to the endosomal membrane and thereby resulting in drug release to the cytoplasm. In our study a series of antisense fluorophore octaarginine peptide nucleic acid (PNA) conjugates were investigated in terms of PCI assisted cellular activity. It is found that tetramethylrhodamine and Alexa Fluor 555 conjugated octaarginine PNA upon irradiation exhibit more than ten-fold increase in antisense activity in the HeLa pLuc705 luciferase splice correction assay. An analogous fluorescein conjugate did not show any significant enhancement due to photobleaching, and neither did an Alexa Fluor 488 conjugate. Using fluorescence microscopy a correlation between endosomal escape and antisense activity was demonstrated, and in parallel a correlation to localized formation of ROS assigned primarily to singlet oxygen was also observed. The results show that tetramethylrhodamine (and to lesser extent Alexa Fluor 555) conjugated octaarginine PNAs are as effectively delivered to the cytosol compartment by PCI as by chloroquine assisted delivery and also indicate that efficient photodynamic endosomal escape is strongly dependent on the quantum yield for photochemical singlet oxygen formation, photostability as well as the lipophilicity of the chromophore.",
author = "Reza Yarani and Takehiko Shiraishi and Nielsen, {Peter E.}",
year = "2018",
month = "12",
day = "1",
doi = "10.1038/s41598-017-18947-x",
language = "English",
volume = "8",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",
number = "1",

}

RIS

TY - JOUR

T1 - Effective photo-enhancement of cellular activity of fluorophore-octaarginine antisense PNA conjugates correlates with singlet oxygen formation, endosomal escape and chromophore lipophilicity

AU - Yarani, Reza

AU - Shiraishi, Takehiko

AU - Nielsen, Peter E.

PY - 2018/12/1

Y1 - 2018/12/1

N2 - Photochemical internalization (PCI) is a cellular drug delivery method based on the generation of light-induced reactive oxygen species (ROS) causing damage to the endosomal membrane and thereby resulting in drug release to the cytoplasm. In our study a series of antisense fluorophore octaarginine peptide nucleic acid (PNA) conjugates were investigated in terms of PCI assisted cellular activity. It is found that tetramethylrhodamine and Alexa Fluor 555 conjugated octaarginine PNA upon irradiation exhibit more than ten-fold increase in antisense activity in the HeLa pLuc705 luciferase splice correction assay. An analogous fluorescein conjugate did not show any significant enhancement due to photobleaching, and neither did an Alexa Fluor 488 conjugate. Using fluorescence microscopy a correlation between endosomal escape and antisense activity was demonstrated, and in parallel a correlation to localized formation of ROS assigned primarily to singlet oxygen was also observed. The results show that tetramethylrhodamine (and to lesser extent Alexa Fluor 555) conjugated octaarginine PNAs are as effectively delivered to the cytosol compartment by PCI as by chloroquine assisted delivery and also indicate that efficient photodynamic endosomal escape is strongly dependent on the quantum yield for photochemical singlet oxygen formation, photostability as well as the lipophilicity of the chromophore.

AB - Photochemical internalization (PCI) is a cellular drug delivery method based on the generation of light-induced reactive oxygen species (ROS) causing damage to the endosomal membrane and thereby resulting in drug release to the cytoplasm. In our study a series of antisense fluorophore octaarginine peptide nucleic acid (PNA) conjugates were investigated in terms of PCI assisted cellular activity. It is found that tetramethylrhodamine and Alexa Fluor 555 conjugated octaarginine PNA upon irradiation exhibit more than ten-fold increase in antisense activity in the HeLa pLuc705 luciferase splice correction assay. An analogous fluorescein conjugate did not show any significant enhancement due to photobleaching, and neither did an Alexa Fluor 488 conjugate. Using fluorescence microscopy a correlation between endosomal escape and antisense activity was demonstrated, and in parallel a correlation to localized formation of ROS assigned primarily to singlet oxygen was also observed. The results show that tetramethylrhodamine (and to lesser extent Alexa Fluor 555) conjugated octaarginine PNAs are as effectively delivered to the cytosol compartment by PCI as by chloroquine assisted delivery and also indicate that efficient photodynamic endosomal escape is strongly dependent on the quantum yield for photochemical singlet oxygen formation, photostability as well as the lipophilicity of the chromophore.

UR - http://www.scopus.com/inward/record.url?scp=85043518833&partnerID=8YFLogxK

U2 - 10.1038/s41598-017-18947-x

DO - 10.1038/s41598-017-18947-x

M3 - Journal article

VL - 8

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

IS - 1

M1 - 638

ER -

ID: 55873687