Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Dopamine D(2) receptor quantification in extrastriatal brain regions using [(123)I]epidepride with bolus/infusion

Research output: Contribution to journalJournal articleResearchpeer-review

  1. Similar serotonin-2A receptor binding in rats with different coping styles or levels of aggression

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Neuropeptide Y-stimulated [(35) S]GTPγs functional binding is reduced in the hippocampus after kainate-induced seizures in mice

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Acute social defeat does not alter cerebral 5-HT2A receptor binding in male Wistar rats

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Transient activation of mTOR following forced treadmill exercise in rats

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Blocking of efflux transporters in rats improves translational validation of brain radioligands

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Cognitive impairment and psychopathology in out-of-hospital cardiac arrest survivors in Denmark: The REVIVAL cohort study protocol

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Glucagon-like peptide-1 receptor regulation of basal dopamine transporter activity is species-dependent

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations
The iodinated benzamide epidepride, which shows a picomolar affinity binding to dopamine D(2) receptors, has been designed for in vivo studies using SPECT. The aim of the present study was to apply a steady-state condition by the bolus/infusion approach with [(123)I]epidepride for the quantification of striatal and extrastriatal dopamine D(2) receptors in humans. In this way the distribution volume of the tracer can be determined from a single SPECT image and one blood sample. Based on bolus experiments, an algorithm using conventional convolution arguments for prediction of the outcome of a bolus/infusion (B/I) experiment was applied. It was predicted that a B/I protocol with infusion of one-third of the initial bolus per hour would be appropriate. Steady-state conditions were attained in extrastriatal regions within 3-4 h but the infusion continued up to 7 h in order to minimize the significance of individual differences in plasma clearance and binding parameters. A steady-state condition, however, could not be attained in striatal brain regions using a B/I protocol of 20 h, even after 11 h. Under near steady-state conditions a striatal:cerebellar ratio of 23 was demonstrated. Epidepride has a unique signal-to-noise ratio compared to [(123)I]IBZM but present difficulties for steady-state measurements of striatal regions. The bolus/infusion approach is particularly feasible for quantification of the binding potential in extrastriatal regions.
Original languageEnglish
JournalSynapse (New York)
Volume36
Issue number4
Pages (from-to)322-9
Number of pages8
ISSN0887-4476
DOIs
Publication statusPublished - 15 Jun 2000

    Research areas

  • Adult, Aged, Benzamides, Brain, Contrast Media, Homeostasis, Humans, Iodine Radioisotopes, Male, Middle Aged, Pyrrolidines, Receptors, Dopamine D2, Tissue Distribution, Tomography, Emission-Computed, Single-Photon

ID: 39028595