Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Development of large-scale manufacturing of adipose-derived stromal cells for clinical applications using bioreactors and human platelet lysate

Research output: Contribution to journalJournal articleResearchpeer-review

  1. Change in HbA1c concentration as decision parameter for frequency of HbA1c measurement

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Relation between invasive hemodynamics and measured glomerular filtration rate by 51Cr-EDTA clearance in advanced heart failure

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Validation of plasma thyroxine and triiodothyronine methods on the ADVIA Centaur® XP

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Phenylephrine increases near-infrared spectroscopy determined muscle oxygenation during head-up tilt in men

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Pro-inflammatory biomarkers in women with non-obstructive angina pectoris and coronary microvascular dysfunction

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Rationale and design of the European multicentre study on Stem Cell therapy in IschEmic Non-treatable Cardiac diseasE (SCIENCE)

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

In vitro expanded adipose-derived stromal cells (ASCs) are a useful resource for tissue regeneration. Translation of small-scale autologous cell production into a large-scale, allogeneic production process for clinical applications necessitates well-chosen raw materials and cell culture platform. We compare the use of clinical-grade human platelet lysate (hPL) and fetal bovine serum (FBS) as growth supplements for ASC expansion in the automated, closed hollow fibre quantum cell expansion system (bioreactor). Stromal vascular fractions were isolated from human subcutaneous abdominal fat. In average, 95 × 106 cells were suspended in 10% FBS or 5% hPL medium, and loaded into a bioreactor coated with cryoprecipitate. ASCs (P0) were harvested, and 30 × 106 ASCs were reloaded for continued expansion (P1). Feeding rate and time of harvest was guided by metabolic monitoring. Viability, sterility, purity, differentiation capacity, and genomic stability of ASCs P1 were determined. Cultivation of SVF in hPL medium for in average nine days, yielded 546 × 106 ASCs compared to 111 × 106 ASCs, after 17 days in FBS medium. ASCs P1 yields were in average 605 × 106 ASCs (PD [population doublings]: 4.65) after six days in hPL medium, compared to 119 × 106 ASCs (PD: 2.45) in FBS medium, after 21 days. ASCs fulfilled ISCT criteria and demonstrated genomic stability and sterility. The use of hPL as a growth supplement for ASCs expansion in the quantum cell expansion system provides an efficient expansion process compared to the use of FBS, while maintaining cell quality appropriate for clinical use. The described process is an obvious choice for manufacturing of large-scale allogeneic ASC products.

Original languageEnglish
JournalScandinavian Journal of Clinical and Laboratory Investigation
Volume78
Issue number4
Pages (from-to)293-300
Number of pages8
ISSN0036-5513
DOIs
Publication statusPublished - Jul 2018

    Research areas

  • Adipose Tissue/cytology, Adult, Bioreactors, Blood Platelets/metabolism, Cell Culture Techniques/methods, Cell Differentiation, Cell Proliferation, Female, Genomic Instability, Humans, Lactates/metabolism, Male, Mesenchymal Stem Cells/cytology, Middle Aged, Phenotype, Time Factors

ID: 56076491