Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Development of highly efficient protocols for extraction and amplification of cytomegalovirus DNA from dried blood spots for detection and genotyping of polymorphic immunomodulatory genes

Research output: Contribution to journalJournal articleResearchpeer-review

  1. Kinetics of the soluble urokinase plasminogen activator receptor (suPAR) in cirrhosis

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Incidence, prevalence and risk factors for hepatitis C in Danish prisons

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. The Strengths and Difficulties Questionnaire and standardized academic tests: Reliability across respondent type and age

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. A case of reassortant seasonal influenza A(H1N2) virus, Denmark, April 2019

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Increased risk of diabetes mellitus five years after an episode of Staphylococcus aureus bacteraemia

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Prevalence of anti-Hepatitis E virus immunoglobulin G in HIV-infected individuals over three decades

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

Congenital cytomegalovirus (CMV) infection is a major cause of birth defects ranging from developmental disorders to stillbirth. Most newborns affected by CMV do not present with symptoms at birth but are at risk of sequelae at later stages of their childhood. Stored dried blood spots (DBS) taken at birth can be used for retrospective diagnosis of hereditary diseases, but detection of pathogens is challenged by potentially low pathogen concentrations in the small blood volume available in a DBS. Here we test four different extraction methods for optimal recovery of CMV DNA from DBS at low to high CMV titers. The recovery efficiencies varied widely between the different extractions (from 3% to 100%) with the most efficient method extracting up to 113-fold more CMV DNA than the least efficient and 8-fold more than the reference protocol. Furthermore, we amplified four immunomodulatory CMV genes from the extracted DNA: the UL40 and UL111A genes which occur as functional knockouts in some circulating CMV strains, and the highly variable UL146 and US28 genes. The PCRs specifically amplified the CMV genes at all tested titers with sufficient quality for sequencing and genotyping. In summary, we here report an extraction method for optimal recovery of CMV DNA from DBSs that can be used for both detection of CMV and for genotyping of polymorphic CMV genes in congenital CMV infection.

Original languageEnglish
JournalPLoS One
Volume14
Issue number9
Pages (from-to)e0222053
ISSN1932-6203
DOIs
Publication statusPublished - 12 Sep 2019

ID: 57934496