Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Detecting sequence signals in targeting peptides using deep learning

Research output: Contribution to journalJournal articleResearchpeer-review

DOI

  1. Community-acquired meningitis caused by beta-haemolytic streptococci in adults: a nationwide population-based cohort study

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Systematic review of machine learning for diagnosis and prognosis in dermatology

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Single mRNP Analysis Reveals that Small Cytoplasmic mRNP Granules Represent mRNA Singletons

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

In bioinformatics, machine learning methods have been used to predict features embedded in the sequences. In contrast to what is generally assumed, machine learning approaches can also provide new insights into the underlying biology. Here, we demonstrate this by presenting TargetP 2.0, a novel state-of-the-art method to identify N-terminal sorting signals, which direct proteins to the secretory pathway, mitochondria, and chloroplasts or other plastids. By examining the strongest signals from the attention layer in the network, we find that the second residue in the protein, that is, the one following the initial methionine, has a strong influence on the classification. We observe that two-thirds of chloroplast and thylakoid transit peptides have an alanine in position 2, compared with 20% in other plant proteins. We also note that in fungi and single-celled eukaryotes, less than 30% of the targeting peptides have an amino acid that allows the removal of the N-terminal methionine compared with 60% for the proteins without targeting peptide. The importance of this feature for predictions has not been highlighted before.

Original languageEnglish
JournalLife science alliance
Volume2
Issue number5
Pages (from-to)1-14
Number of pages14
ISSN2575-1077
DOIs
Publication statusPublished - Oct 2019

ID: 59000903