Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Depletion of ATP Limits Membrane Excitability of Skeletal Muscle by Increasing Both ClC1-Open Probability and Membrane Conductance

Research output: Contribution to journalJournal articleResearchpeer-review

DOI

  1. Probing Context-Dependent Modulations of Ipsilateral Premotor-Motor Connectivity in Relapsing-Remitting Multiple Sclerosis

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Functional Loss After Meningitis-Evaluation of Vestibular Function in Patients With Postmeningitic Hearing Loss

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Mitochondrial Function in Gilles de la Tourette Syndrome Patients With and Without Intragenic IMMP2L Deletions

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Easily Conducted Tests During the First Week Post-stroke Can Aid the Prediction of Arm Functioning at 6 Months

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Creation and implementation of a European registry for patients with McArdle disease and other muscle glycogenoses (EUROMAC registry)

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Phenotypic Spectrum of α-Dystroglycanopathies Associated With the c.919T>a Variant in the FKRP Gene in Humans and Mice

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Bimagrumab vs Optimized Standard of Care for Treatment of Sarcopenia in Community-Dwelling Older Adults: A Randomized Clinical Trial

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Vacuoles, Often Containing Glycogen, Are a Consistent Finding in Hypokalemic Periodic Paralysis

    Research output: Contribution to journalJournal articleResearchpeer-review

  5. Editorial: Remaining diagnostic issues and start of a treatment era for muscle diseases

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

Activation of skeletal muscle contractions require that action potentials can be excited and propagated along the muscle fibers. Recent studies have revealed that muscle fiber excitability is regulated during repeated firing of action potentials by cellular signaling systems that control the function of ion channel that determine the resting membrane conductance (G m ). In fast-twitch muscle, prolonged firing of action potentials triggers a marked increase in G m , reducing muscle fiber excitability and causing action potential failure. Both ClC-1 and KATP ion channels contribute to this G m rise, but the exact molecular regulation underlying their activation remains unclear. Studies in expression systems have revealed that ClC-1 is able to bind adenosine nucleotides, and that low adenosine nucleotide levels result in ClC-1 activation. In three series of experiments, this study aimed to explore whether ClC-1 is also regulated by adenosine nucleotides in native skeletal muscle fibers, and whether the adenosine nucleotide sensitivity of ClC-1 could explain the rise in G m muscle fibers during prolonged action potential firing. First, whole cell patch clamping of mouse muscle fibers demonstrated that ClC-1 activation shifted in the hyperpolarized direction when clamping pipette solution contained 0 mM ATP compared with 5 mM ATP. Second, three-electrode G m measurement during muscle fiber stimulation showed that glycolysis inhibition, with 2-deoxy-glucose or iodoacetate, resulted in an accelerated and rapid >400% G m rise during short periods of repeated action potential firing in both fast-twitch and slow-twitch rat, and in human muscle fibers. Moreover, ClC-1 inhibition with 9-anthracenecarboxylic acid resulted in either an absence or blunted G m rise during action potential firing in human muscle fibers. Third, G m measurement during repeated action potential firing in muscle fibers from a murine McArdle disease model suggest that the rise in G m was accelerated in a subset of fibers. Together, these results are compatible with ClC-1 function being regulated by the level of adenosine nucleotides in native tissue, and that the channel operates as a sensor of skeletal muscle metabolic state, limiting muscle excitability when energy status is low.

Original languageEnglish
JournalFrontiers in Neurology
Volume11
Pages (from-to)541
ISSN1664-2295
DOIs
Publication statusPublished - 19 Jun 2020

ID: 61072640