Deepaware: A hybrid deep learning and context-aware heuristics-based model for atrial fibrillation detection

Devender Kumar, Abdolrahman Peimankar, Kamal Sharma, Helena Domínguez, Sadasivan Puthusserypady, Jakob E Bardram


BACKGROUND: State-of-the-art automatic atrial fibrillation (AF) detection models trained on RR-interval (RRI) features generally produce high performance on standard benchmark electrocardiogram (ECG) AF datasets. These models, however, result in a significantly high false positive rates (FPRs) when applied on ECG data collected under free-living ambulatory conditions and in the presence of non-AF arrhythmias.

METHOD: This paper proposes DeepAware, a novel hybrid model combining deep learning (DL) and context-aware heuristics (CAH), which reduces the FPR effectively and improves the AF detection performance on participant-operated ambulatory ECG from free-living conditions. It exploits the RRI and P-wave features, as well as the contextual features from the ambulatory ECG.

RESULTS: DeepAware is shown to be very generalizable and superior to the state-of-the-art models when applied on unseen benchmark ECG AF datasets. Most importantly, the model is able to detect AF efficiently when applied on participant-operated ambulatory ECG recordings from free-living conditions and has achieved a sensitivity (Se), specificity (Sp), and accuracy (Acc) of 97.94%, 98.39%, 98.06%, respectively. Results also demonstrate the effect of atrial activity analysis (via P-waves detection) and CAH in reducing the FPR over the RRI features-based AF detection model.

CONCLUSIONS: The proposed DeepAware model can substantially reduce the physician's workload of manually reviewing the false positives (FPs) and facilitate long-term ambulatory monitoring for early detection of AF.

Original languageEnglish
Article number10.1016
JournalComputer Methods and Programs in Biomedicine
Pages (from-to)106899
Publication statusPublished - Jun 2022


  • Algorithms
  • Atrial Fibrillation/diagnosis
  • Deep Learning
  • Electrocardiography/methods
  • Electrocardiography, Ambulatory
  • Heuristics
  • Humans


Dive into the research topics of 'Deepaware: A hybrid deep learning and context-aware heuristics-based model for atrial fibrillation detection'. Together they form a unique fingerprint.

Cite this