TY - JOUR
T1 - Cross-tissue eQTL enrichment of associations in schizophrenia
AU - Bettella, Francesco
AU - Brown, Andrew A
AU - Smeland, Olav B
AU - Wang, Yunpeng
AU - Witoelar, Aree
AU - Buil Demur, Alfonso A
AU - Thompson, Wesley K
AU - Zuber, Verena
AU - Dale, Anders M
AU - Djurovic, Srdjan
AU - Andreassen, Ole A
PY - 2018
Y1 - 2018
N2 - The genome-wide association study of the Psychiatric Genomics Consortium identified over one hundred schizophrenia susceptibility loci. The number of non-coding variants discovered suggests that gene regulation could mediate the effect of these variants on disease. Expression quantitative trait loci (eQTLs) contribute to variation in levels of mRNA. Given the co-occurrence of schizophrenia and several traits not involving the central nervous system (CNS), we investigated the enrichment of schizophrenia associations among eQTLs for four non-CNS tissues: adipose tissue, epidermal tissue, lymphoblastoid cells and blood. Significant enrichment was seen in eQTLs of all tissues: adipose (β = 0.18, p = 8.8 × 10-06), epidermal (β = 0.12, p = 3.1 × 10-04), lymphoblastoid (β = 0.19, p = 6.2 × 10-08) and blood (β = 0.19, p = 6.4 × 10-06). For comparison, we looked for enrichment of association with traits of known relevance to one or more of these tissues (body mass index, height, rheumatoid arthritis, systolic blood pressure and type-II diabetes) and found that schizophrenia enrichment was of similar scale to that observed when studying diseases in the context of a more likely causal tissue. To further investigate tissue specificity, we looked for differential enrichment of eQTLs with relevant Roadmap affiliation (enhancers and promoters) and varying distance from the transcription start site. Neither factor significantly contributed to the enrichment, suggesting that this is equally distributed in tissue-specific and cross-tissue regulatory elements. Our analyses suggest that functional correlates of schizophrenia risk are prevalent in non-CNS tissues. This could be because of pleiotropy or the effectiveness of variants affecting expression in different contexts. This suggests the utility of large, single-tissue eQTL experiments to increase eQTL discovery power in the study of schizophrenia, in addition to smaller, multiple-tissue approaches. Our results conform to the notion that schizophrenia is a systemic disorder involving many tissues.
AB - The genome-wide association study of the Psychiatric Genomics Consortium identified over one hundred schizophrenia susceptibility loci. The number of non-coding variants discovered suggests that gene regulation could mediate the effect of these variants on disease. Expression quantitative trait loci (eQTLs) contribute to variation in levels of mRNA. Given the co-occurrence of schizophrenia and several traits not involving the central nervous system (CNS), we investigated the enrichment of schizophrenia associations among eQTLs for four non-CNS tissues: adipose tissue, epidermal tissue, lymphoblastoid cells and blood. Significant enrichment was seen in eQTLs of all tissues: adipose (β = 0.18, p = 8.8 × 10-06), epidermal (β = 0.12, p = 3.1 × 10-04), lymphoblastoid (β = 0.19, p = 6.2 × 10-08) and blood (β = 0.19, p = 6.4 × 10-06). For comparison, we looked for enrichment of association with traits of known relevance to one or more of these tissues (body mass index, height, rheumatoid arthritis, systolic blood pressure and type-II diabetes) and found that schizophrenia enrichment was of similar scale to that observed when studying diseases in the context of a more likely causal tissue. To further investigate tissue specificity, we looked for differential enrichment of eQTLs with relevant Roadmap affiliation (enhancers and promoters) and varying distance from the transcription start site. Neither factor significantly contributed to the enrichment, suggesting that this is equally distributed in tissue-specific and cross-tissue regulatory elements. Our analyses suggest that functional correlates of schizophrenia risk are prevalent in non-CNS tissues. This could be because of pleiotropy or the effectiveness of variants affecting expression in different contexts. This suggests the utility of large, single-tissue eQTL experiments to increase eQTL discovery power in the study of schizophrenia, in addition to smaller, multiple-tissue approaches. Our results conform to the notion that schizophrenia is a systemic disorder involving many tissues.
U2 - 10.1371/journal.pone.0202812
DO - 10.1371/journal.pone.0202812
M3 - Journal article
C2 - 30188921
SN - 1932-6203
VL - 13
SP - e0202812
JO - PLoS One
JF - PLoS One
IS - 9
ER -