Creating a training set for artificial intelligence from initial segmentations of airways

Ivan Dudurych, Antonio Garcia-Uceda, Zaigham Saghir, Harm A W M Tiddens, Rozemarijn Vliegenthart, Marleen de Bruijne

4 Citations (Scopus)

Abstract

Airways segmentation is important for research about pulmonary disease but require a large amount of time by trained specialists. We used an openly available software to improve airways segmentations obtained from an artificial intelligence (AI) tool and retrained the tool to get a better performance. Fifteen initial airway segmentations from low-dose chest computed tomography scans were obtained with a 3D-Unet AI tool previously trained on Danish Lung Cancer Screening Trial and Erasmus-MC Sophia datasets. Segmentations were manually corrected in 3D Slicer. The corrected airway segmentations were used to retrain the 3D-Unet. Airway measurements were automatically obtained and included count, airway length and luminal diameter per generation from the segmentations. Correcting segmentations required 2-4 h per scan. Manually corrected segmentations had more branches (p < 0.001), longer airways (p < 0.001) and smaller luminal diameters (p = 0.004) than initial segmentations. Segmentations from retrained 3D-Unets trended towards more branches and longer airways compared to the initial segmentations. The largest changes were seen in airways from 6th generation onwards. Manual correction results in significantly improved segmentations and is potentially a useful and time-efficient method to improve the AI tool performance on a specific hospital or research dataset.

Original languageEnglish
Article number54
JournalEuropean radiology experimental
Volume5
Issue number1
Pages (from-to)54
ISSN2509-9280
DOIs
Publication statusPublished - 29 Nov 2021

Keywords

  • Artificial Intelligence
  • Early Detection of Cancer
  • Humans
  • Lung Neoplasms/diagnostic imaging
  • Software
  • Tomography, X-Ray Computed

Fingerprint

Dive into the research topics of 'Creating a training set for artificial intelligence from initial segmentations of airways'. Together they form a unique fingerprint.

Cite this