TY - JOUR
T1 - Correlates of Iron, Cobalamin, Folate, and Vitamin A Status among Stunted Children
T2 - A Cross-Sectional Study in Uganda
AU - Mutumba, Rolland
AU - Pesu, Hannah
AU - Mbabazi, Joseph
AU - Greibe, Eva
AU - Olsen, Mette F.
AU - Briend, André
AU - Mølgaard, Christian
AU - Ritz, Christian
AU - Nabukeera-Barungi, Nicolette
AU - Mupere, Ezekiel
AU - Filteau, Suzanne
AU - Friis, Henrik
AU - Grenov, Benedikte
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/8
Y1 - 2023/8
N2 - Micronutrient deficiencies and stunting are prevalent. We assessed correlates of iron, cobalamin, folate, and vitamin A biomarkers in a cross-sectional study of stunted children aged 12–59 months in eastern Uganda. The biomarkers measured were serum ferritin (S-FE), soluble transferrin receptor (S-TfR), retinol binding protein (S-RBP), plasma cobalamin (P-Cob), methylmalonic acid (P-MMA), and folate (P-Fol). Using linear regression, we assessed socio-demography, stunting severity, malaria rapid test, and inflammation as correlates of micronutrient biomarkers. Of the 750 children, the mean (SD) age was 32.0 (11.7) months, and 45% were girls. Iron stores were depleted (inflammation-corrected S-FE < 12 µg/L) in 43%, and 62% had tissue iron deficiency (S-TfR > 8.3 mg/L). P-Cob was low (<148 pmol/L) and marginal (148–221 pmol/L) in 3% and 20%, and 16% had high P-MMA (>0.75 µmol/L). Inflammation-corrected S-RBP was low (<0.7 µmol/L) in 21% and P-Fol (<14 nmol/L) in 1%. Age 24–59 months was associated with higher S-FE and P-Fol and lower S-TfR. Breastfeeding beyond infancy was associated with lower iron status and cobalamin status, and malaria was associated with lower cobalamin status and tissue iron deficiency (higher S-TfR) despite iron sequestration in stores (higher S-FE). In conclusion, stunted children have iron, cobalamin, and vitamin A deficiencies. Interventions addressing stunting should target co-existing micronutrient deficiencies.
AB - Micronutrient deficiencies and stunting are prevalent. We assessed correlates of iron, cobalamin, folate, and vitamin A biomarkers in a cross-sectional study of stunted children aged 12–59 months in eastern Uganda. The biomarkers measured were serum ferritin (S-FE), soluble transferrin receptor (S-TfR), retinol binding protein (S-RBP), plasma cobalamin (P-Cob), methylmalonic acid (P-MMA), and folate (P-Fol). Using linear regression, we assessed socio-demography, stunting severity, malaria rapid test, and inflammation as correlates of micronutrient biomarkers. Of the 750 children, the mean (SD) age was 32.0 (11.7) months, and 45% were girls. Iron stores were depleted (inflammation-corrected S-FE < 12 µg/L) in 43%, and 62% had tissue iron deficiency (S-TfR > 8.3 mg/L). P-Cob was low (<148 pmol/L) and marginal (148–221 pmol/L) in 3% and 20%, and 16% had high P-MMA (>0.75 µmol/L). Inflammation-corrected S-RBP was low (<0.7 µmol/L) in 21% and P-Fol (<14 nmol/L) in 1%. Age 24–59 months was associated with higher S-FE and P-Fol and lower S-TfR. Breastfeeding beyond infancy was associated with lower iron status and cobalamin status, and malaria was associated with lower cobalamin status and tissue iron deficiency (higher S-TfR) despite iron sequestration in stores (higher S-FE). In conclusion, stunted children have iron, cobalamin, and vitamin A deficiencies. Interventions addressing stunting should target co-existing micronutrient deficiencies.
KW - cobalamin
KW - folate
KW - iron
KW - micronutrient status
KW - stunting
KW - vitamin A
UR - http://www.scopus.com/inward/record.url?scp=85167733258&partnerID=8YFLogxK
U2 - 10.3390/nu15153429
DO - 10.3390/nu15153429
M3 - Journal article
C2 - 37571364
AN - SCOPUS:85167733258
SN - 2072-6643
VL - 15
JO - Nutrients
JF - Nutrients
IS - 15
M1 - 3429
ER -