Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI

Research output: Contribution to journalJournal articleResearchpeer-review

DOI

  1. Quantification of cerebral perfusion and cerebrovascular reserve using Turbo-QUASAR arterial spin labeling MRI

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Coil profile estimation strategies for parallel imaging with hyperpolarized 13 C MRI

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Gamma-aminobutyric acid edited echo-planar spectroscopic imaging (EPSI) with MEGA-sLASER at 7T

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Comparison of prospective head motion correction with NMR field probes and an optical tracking system

    Research output: Contribution to journalJournal articleResearchpeer-review

  5. Improved calculation of the equilibrium magnetization of arterial blood in arterial spin labeling

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Differences in frontal network anatomy across primate species

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Limited colocalization of microbleeds and microstructural changes after severe traumatic brain injury

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Validation of structural brain connectivity networks: The impact of scanning parameters

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Correction to: Effects of glucagon-like peptide 1 analogs on alcohol intake in alcohol-preferring vervet monkeys

    Research output: Contribution to journalJournal articleResearchpeer-review

  5. Tractography reproducibility challenge with empirical data (TraCED): The 2017 ISMRM diffusion study group challenge

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations
The ActiveAx technique fits the minimal model of white matter diffusion to diffusion MRI data acquired using optimized protocols that provide orientationally invariant indices of axon diameter and density. We investigated how limitations of the available maximal gradient strength (G(max) ) on a scanner influence the sensitivity to a range of axon diameters. Multishell high-angular-diffusion-imaging (HARDI) protocols for G(max) of 60, 140, 200, and 300 mT/m were optimized for the pulsed-gradient-spin-echo (PGSE) sequence. Data were acquired on a fixed monkey brain and Monte-Carlo simulations supported the results. Increasing G(max) reduces within-voxel variation of the axon diameter index and improves contrast beyond what is achievable with higher signal-to-noise ratio. Simulations reveal an upper bound on the axon diameter (∼10 μm) that pulsed-gradient-spin-echo measurements are sensitive to, due to a trade-off between short T(2) and the long diffusion time needed to probe larger axon diameters. A lower bound (∼2.5 μm) slightly dependent on G(max) was evident, below which axon diameters are identifiable as small, but impossible to differentiate. These results emphasize the key-role of G(max) for enhancing contrast between axon diameter distributions and are, therefore, relevant in general for microstructure imaging methods and highlight the need for increased G(max) on future commercial systems. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.
Original languageEnglish
JournalMagnetic Resonance in Medicine
Volume70
Issue number3
Pages (from-to)711-721
Number of pages11
ISSN0740-3194
DOIs
Publication statusPublished - Sep 2013

ID: 36423982