TY - JOUR
T1 - Compensatory plasticity and cross-modal reorganization following early visual deprivation
AU - Kupers, Ron
AU - Ptito, Maurice
N1 - Copyright © 2013 Elsevier Ltd. All rights reserved.
PY - 2014/4
Y1 - 2014/4
N2 - For human and non-human primates, vision is one of the most privileged sensory channels used to interact with the environment. The importance of vision is strongly embedded in the organization of the primate brain as about one third of its cortical surface is involved in visual functions. It is therefore not surprising that the absence of vision from birth, or the loss of vision later in life, has huge consequences, both anatomically and functionally. Studies in animals and humans, conducted over the past few decades, have demonstrated that the absence of vision causes massive structural changes that take place not only in the visually deprived cortex but also in other brain areas. These studies have further shown that the visually deprived cortex becomes responsive to a wide variety of non-visual sensory inputs. Recent studies even showed a role of the visually deprived cortex in cognitive processes. At the behavioral level, increases in acuity for auditory and tactile processes have been reported. The study of the congenitally blind brain also offers a unique model to gain better insights into the functioning of the normal sighted brain and to understand to what extent visual experience is necessary for the brain to develop its functional architecture. Finally, the study of the blind brain allows us to investigate how consciousness develops in the absence of vision. How does the brain of someone who has never had any visual perception form an image of the external world? In this paper, we discuss recent findings from animal studies as well as from behavioural and functional brain imaging studies in sighted and blind individuals that address these questions.
AB - For human and non-human primates, vision is one of the most privileged sensory channels used to interact with the environment. The importance of vision is strongly embedded in the organization of the primate brain as about one third of its cortical surface is involved in visual functions. It is therefore not surprising that the absence of vision from birth, or the loss of vision later in life, has huge consequences, both anatomically and functionally. Studies in animals and humans, conducted over the past few decades, have demonstrated that the absence of vision causes massive structural changes that take place not only in the visually deprived cortex but also in other brain areas. These studies have further shown that the visually deprived cortex becomes responsive to a wide variety of non-visual sensory inputs. Recent studies even showed a role of the visually deprived cortex in cognitive processes. At the behavioral level, increases in acuity for auditory and tactile processes have been reported. The study of the congenitally blind brain also offers a unique model to gain better insights into the functioning of the normal sighted brain and to understand to what extent visual experience is necessary for the brain to develop its functional architecture. Finally, the study of the blind brain allows us to investigate how consciousness develops in the absence of vision. How does the brain of someone who has never had any visual perception form an image of the external world? In this paper, we discuss recent findings from animal studies as well as from behavioural and functional brain imaging studies in sighted and blind individuals that address these questions.
U2 - 10.1016/j.neubiorev.2013.08.001
DO - 10.1016/j.neubiorev.2013.08.001
M3 - Journal article
C2 - 23954750
SN - 0149-7634
VL - 41
SP - 36
EP - 52
JO - Neuroscience and Biobehavioral Reviews
JF - Neuroscience and Biobehavioral Reviews
ER -