Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

C/EBPα Is Required for Long-Term Self-Renewal and Lineage Priming of Hematopoietic Stem Cells and for the Maintenance of Epigenetic Configurations in Multipotent Progenitors

Research output: Contribution to journalJournal articleResearchpeer-review

  1. Genome-wide association study identifies 16 genomic regions associated with circulating cytokines at birth

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. Targeted inhibition of cooperative mutation- and therapy-induced AKT activation in AML effectively enhances response to chemotherapy

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Quantitative single-cell proteomics as a tool to characterize cellular hierarchies

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Basement membrane stiffness determines metastases formation

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. The trans-ancestral genomic architecture of glycemic traits

    Research output: Contribution to journalJournal articleResearchpeer-review

  5. The ASXL1-G643W variant accelerates the development of CEBPA mutant acute myeloid leukemia

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations
Transcription factors are key regulators of hematopoietic stem cells (HSCs) and act through their ability to bind DNA and impact on gene transcription. Their functions are interpreted in the complex landscape of chromatin, but current knowledge on how this is achieved is very limited. C/EBPα is an important transcriptional regulator of hematopoiesis, but its potential functions in HSCs have remained elusive. Here we report that C/EBPα serves to protect adult HSCs from apoptosis and to maintain their quiescent state. Consequently, deletion of Cebpa is associated with loss of self-renewal and HSC exhaustion. By combining gene expression analysis with genome-wide assessment of C/EBPα binding and epigenetic configurations, we show that C/EBPα acts to modulate the epigenetic states of genes belonging to molecular pathways important for HSC function. Moreover, our data suggest that C/EBPα acts as a priming factor at the HSC level where it actively promotes myeloid differentiation and counteracts lymphoid lineage choice. Taken together, our results show that C/EBPα is a key regulator of HSC biology, which influences the epigenetic landscape of HSCs in order to balance different cell fate options.
Original languageEnglish
JournalP L o S Genetics (Online)
Volume10
Issue number1
Pages (from-to)e1004079
ISSN1553-7404
DOIs
Publication statusPublished - Jan 2014

ID: 42873331