Biologic and clinical analysis of childhood gamma delta T-ALL identifies LMO2/STAG2 rearrangements as extremely high-risk

Shunsuke Kimura, Chun Shik Park, Lindsey E Montefiori, Ilaria Iacobucci, Petri Polonen, Qingsong Gao, Elizabeth D Arnold, Andishe Attarbaschi, Anthony Brown, Barbara Buldini, Kenneth J Caldwell, Yunchao Chang, Chelsey Chen, Cheng Cheng, Zhongshan Cheng, John Choi, Valentino Conter, Kristine R Crews, Hester A de Groot-Kruseman, Takao DeguchiMariko Eguchi, Hannah Elisa Muhle, Sarah Elitzur, Gabriele Escherich, Burgess B Freeman, Zhaohui Gu, Katie Han, Keizo Horibe, Toshihiko Imamura, Sima Jeha, Motohiro Kato, Kean Hui Chiew, Tanya Khan, Michal Kicinski, Stefan Kohrer, Steven M Kornblau, Rishi S Kotecha, Chi-Kong Li, Yen-Chun Liu, Franco Locatelli, Selina M Luger, Elisabeth M Paietta, Atsushi Manabe, Hanne Vibeke Marquart, Riccardo Masetti, Mellissa Maybury, Pauline Mazilier, Jules P P Meijerink, Sharnise Mitchell, Takako Miyamura, Andrew S Moore, Koichi Oshima, Katarzyna Pawinska-Wasikowska, Rob Pieters, Mollie S Prater, Shondra M Pruett-Miller, Ching-Hon Pui, Chunxu Qu, Michaela Reiterova, Noemi Reyes, Kathryn G Roberts, Jacob M Rowe, Atsushi Sato, Kjeld Schmiegelow, Martin Schrappe, Shuhong Shen, Szymon Skoczen, Orietta Spinelli, Jan Stary, Michael Svaton, Masatoshi Takagi, Junko Takita, Yanjing Tang, David T Teachey, Paul G Thomas, Daisuke Tomizawa, Jan Trka, Elena Varotto, Tiffaney L Vincent, Jun J Yang, Allen Ej Yeoh, Yinmei Zhou, Martin Zimmermann, Hiroto Inaba, Charles G Mullighan*

*Corresponding author for this work

Abstract

Acute lymphoblastic leukemia expressing the gamma delta T cell receptor (yo T-ALL) is a poorly understood disease. We studied 200 children with yo T-ALL from 13 clinical study groups to understand the clinical and genetic features of this disease. We found age and genetic drivers were significantly associated with outcome. yo T-ALL diagnosed in children under three years of age was extremely high-risk and enriched for genetic alterations that result in both LMO2 activation and STAG2 inactivation. Mechanistically, using patient samples and isogenic cell lines, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping, resulting in deregulation of gene expression associated with T-cell differentiation. High throughput drug screening identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which can be targeted by Poly(ADP-ribose) polymerase (PARP) inhibition. These data provide a diagnostic framework for classification and risk stratification of pediatric yo T-ALL.

Original languageEnglish
JournalCancer Discovery
ISSN2159-8274
DOIs
Publication statusE-pub ahead of print - 25 Jun 2024

Fingerprint

Dive into the research topics of 'Biologic and clinical analysis of childhood gamma delta T-ALL identifies LMO2/STAG2 rearrangements as extremely high-risk'. Together they form a unique fingerprint.

Cite this