Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Bacterial superglue enables easy development of efficient virus-like particle based vaccines

Research output: Contribution to journalJournal articleResearchpeer-review

  1. Capsid-like particles decorated with the SARS-CoV-2 receptor-binding domain elicit strong virus neutralization activity

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Antigenic and immunogenic evaluation of permutations of soluble hepatitis C virus envelope protein E2 and E1 antigens

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. A simple method for detecting oncofetal chondroitin sulfate glycosaminoglycans in bladder cancer urine

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations

BACKGROUND: Virus-like particles (VLPs) represent a significant advance in the development of subunit vaccines, combining high safety and efficacy. Their particulate nature and dense repetitive subunit organization makes them ideal scaffolds for display of vaccine antigens. Traditional approaches for VLP-based antigen display require labor-intensive trial-and-error optimization, and often fail to generate dense antigen display. Here we utilize the split-intein (SpyTag/SpyCatcher) conjugation system to generate stable isopeptide bound antigen-VLP complexes by simply mixing of the antigen and VLP components.

RESULTS: Genetic fusion of SpyTag or SpyCatcher to the N-terminus and/or C-terminus of the Acinetobacter phage AP205 capsid protein resulted in formation of stable, nonaggregated VLPs expressing one SpyCatcher, one SpyTag or two SpyTags per capsid protein. Mixing of spy-VLPs with eleven different vaccine antigens fused to SpyCatcher or SpyTag resulted in formation of antigen-VLP complexes with coupling efficiencies (% occupancy of total VLP binding sites) ranging from 22-88 %. In mice, spy-VLP vaccines presenting the malaria proteins Pfs25 or VAR2CSA markedly increased antibody titer, affinity, longevity and functional efficacy compared to corresponding vaccines employing monomeric proteins. The spy-VLP vaccines also effectively broke B cell self-tolerance and induced potent and durable antibody responses upon vaccination with cancer or allergy-associated self-antigens (PD-L1, CTLA-4 and IL-5).

CONCLUSIONS: The spy-VLP system constitutes a versatile and rapid method to develop highly immunogenic VLP-based vaccines. Our data provide proof-of-concept for the technology's ability to present complex vaccine antigens to the immune system and elicit robust functional antibody responses as well as to efficiently break B cell self-tolerance. The spy-VLP-system may serve as a generic tool for the cost-effective development of effective VLP-vaccines against both infectious- and non-communicable diseases and could facilitate rapid and unbiased screening of vaccine candidate antigens.

Original languageEnglish
JournalJournal of Nanobiotechnology
Volume14
Pages (from-to)30
ISSN1477-3155
DOIs
Publication statusPublished - 27 Apr 2016

    Research areas

  • Acinetobacter, Animals, Antigens, Bacterial, B-Lymphocytes, Bacteriophages, Capsid Proteins, Female, Mice, Mice, Inbred BALB C, Mice, Inbred C57BL, Vaccination, Vaccines, Virus-Like Particle, Journal Article, Research Support, Non-U.S. Gov't

ID: 49205263