Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital

Antibody-mediated targeting of the urokinase-type plasminogen activator proteolytic function neutralizes fibrinolysis in vivo

Research output: Contribution to journalJournal articleResearchpeer-review


  1. Helicobacter pylori Colonization Drives Urokinase Receptor (uPAR) Expression in Murine Gastric Epithelium During Early Pathogenesis

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. The collagen receptor uPARAP/Endo180 regulates collectins through unique structural elements in its FNII domain

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Cellular uptake of collagens and implications for immune cell regulation in disease

    Research output: Contribution to journalReviewResearchpeer-review

  4. Crystal Structures of Human C4.4A Reveal the Unique Association of Ly6/uPAR/α-neurotoxin Domain

    Research output: Contribution to journalJournal articleResearchpeer-review

View graph of relations
Urokinase-type plasminogen activator (uPA) plays a central role in tissue remodeling processes. Most of our understanding of the role of uPA in vivo is derived from studies using gene-targeted uPA-deficient mice. To enable in vivo studies on the specific interference with uPA functionality in mouse models, we have now developed murine monoclonal antibodies (mAbs) directed against murine uPA by immunization of uPA-deficient mice with the recombinant protein. Guided by enzyme-linked immunosorbent assay, Western blotting, surface plasmon resonance, and enzyme kinetic analyses, we have selected two highly potent and inhibitory anti-uPA mAbs (mU1 and mU3). Both mAbs recognize epitopes located on the B-chain of uPA that encompasses the catalytic site. In enzyme activity assays in vitro, mU1 blocked uPA-catalyzed plasminogen activation as well as plasmin-mediated pro-uPA activation, whereas mU3 only was directed against the first of these reactions. We additionally provide evidence that mU1, but not mU3, successfully targets uPA-dependent processes in vivo. Hence, systemic administration of mU1 (i) rescued mice treated with a uPA-activable anthrax protoxin and (ii) impaired uPA-mediated hepatic fibrinolysis in tissue-type plasminogen activator (tPA)-deficient mice, resulting in a phenotype mimicking that of uPA;tPA double deficient mice. Importantly, this is the first report demonstrating specific antagonist-directed targeting of mouse uPA at the enzyme activity level in a normal physiological process in vivo.
Original languageEnglish
JournalThe journal of biological chemistry
Issue number47
Pages (from-to)32506-15
Number of pages10
Publication statusPublished - 21 Nov 2008

    Research areas

  • Animals, Antibodies, Antibodies, Monoclonal, Enzyme-Linked Immunosorbent Assay, Female, Fibrinolysis, Kinetics, Liver, Mice, Mice, Inbred C57BL, Models, Biological, Protein Binding, Recombinant Proteins, Surface Plasmon Resonance, Urokinase-Type Plasminogen Activator

ID: 39988595