Research
Print page Print page
Switch language
The Capital Region of Denmark - a part of Copenhagen University Hospital
Published

Antibiotic susceptibility of cystic fibrosis lung microbiome members in a multispecies biofilm

Research output: Contribution to journalJournal articleResearchpeer-review

  1. Genetic determinants of Pseudomonas aeruginosa fitness during biofilm growth

    Research output: Contribution to journalJournal articleResearchpeer-review

  2. Improving antibiotic treatment of bacterial biofilm by hyperbaric oxygen therapy: Not just hot air

    Research output: Contribution to journalReviewpeer-review

  3. Minimum information guideline for spectrofotometric and fluorometric methods to assess biofilm formation in microplates

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Into the well - A close look at the complex structures of a microtiter biofilm and the crystal violet assay

    Research output: Contribution to journalJournal articleResearchpeer-review

  1. APMIS pandemic editorial

    Research output: Contribution to journalEditorialpeer-review

  2. The discovery of bacterial biofilm in patients with muscle invasive bladder cancer

    Research output: Contribution to journalJournal articleResearchpeer-review

  3. Bacterial aggregate size determines phagocytosis efficiency of polymorphonuclear leukocytes

    Research output: Contribution to journalJournal articleResearchpeer-review

  4. Early IL-2 treatment of mice with Pseudomonas aeruginosa pneumonia induced PMN-dominating response and reduced lung pathology

    Research output: Contribution to journalJournal articleResearchpeer-review

  5. Improving antibiotic treatment of bacterial biofilm by hyperbaric oxygen therapy: Not just hot air

    Research output: Contribution to journalReviewpeer-review

  • Eva Vandeplassche
  • Andrea Sass
  • Lisa Ostyn
  • Mette Burmølle
  • Kasper Nørskov Kragh
  • Thomas Bjarnsholt
  • Tom Coenye
  • Aurélie Crabbé
View graph of relations

The lungs of cystic fibrosis (CF) patients are often chronically colonized by multiple microbial species that can form biofilms, including the major CF pathogen Pseudomonas aeruginosa. Herewith, lower microbial diversity in CF airways is typically associated with worse health outcomes. In an attempt to treat CF lung infections patients are frequently exposed to antibiotics, which may affect microbial diversity. This study aimed at understanding if common antibiotics that target P. aeruginosa influence microbial diversity. To this end, a microaerophilic multispecies biofilm model of frequently co-isolated members of the CF lung microbiome (Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus anginosus, Achromobacter xylosoxidans, Rothia mucilaginosa, and Gemella haemolysans) was exposed to antipseudomonal antibiotics. We found that antibiotics that affected several dominant species (i.e. ceftazidime, tobramycin) resulted in higher species evenness compared to colistin, which is only active against P. aeruginosa. Furthermore, susceptibility of individual species in the multispecies biofilm following antibiotic treatment was compared to that of the respective single-species biofilms, showing no differences. Adding three anaerobic species (Prevotella melaninogenica, Veillonella parvula, and Fusobacterium nucleatum) to the multispecies biofilm did not influence antibiotic susceptibility. In conclusion, our study demonstrates antibiotic-dependent effects on microbial community diversity of multispecies biofilms comprised of CF microbiome members.

Original languageEnglish
JournalBiofilm
Volume2
Pages (from-to)100031
ISSN2590-2075
DOIs
Publication statusPublished - Dec 2020

ID: 61985896