Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Stronger findings from mass spectral data through multi-peak modeling

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. spliceR: an R package for classification of alternative splicing and prediction of coding potential from RNA-seq data

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Estimation of allele frequency and association mapping using next-generation sequencing data

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Functional gene networks reveal distinct mechanisms segregating in migraine families

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. A rare missense variant in APC interrupts splicing and causes AFAP in two Danish families

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Familial analysis reveals rare risk variants for migraine in regulatory regions

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

BACKGROUND: Genetic epistasis is an often-overlooked area in the study of the genomics of complex traits. Genome-wide association studies are a useful tool for revealing potential causal genetic variants, but in this context, epistasis is generally ignored. Data complexity and interpretation issues make it difficult to process and interpret epistasis. As the number of interaction grows exponentially with the number of variants, computational limitation is a bottleneck. Gene Network based strategies have been successful in integrating biological data and identifying relevant hub genes and pathways related to complex traits. In this study, epistatic interactions and network-based analysis are combined in the Weighted Interaction SNP hub (WISH) method and implemented in an efficient and easy to use R package.

RESULTS: The WISH R package (WISH-R) was developed to calculate epistatic interactions on a genome-wide level based on genomic data. It is easy to use and install, and works on regular genomic data. The package filters data based on linkage disequilibrium and calculates epistatic interaction coefficients between SNP pairs based on a parallelized efficient linear model and generalized linear model implementations. Normalized epistatic coefficients are analyzed in a network framework, alleviating multiple testing issues and integrating biological signal to identify modules and pathways related to complex traits. Functions for visualizing results and testing runtimes are also provided.

CONCLUSION: The WISH-R package is an efficient implementation for analyzing genome-wide epistasis for complex diseases and traits. It includes methods and strategies for analyzing epistasis from initial data filtering until final data interpretation. WISH offers a new way to analyze genomic data by combining epistasis and network based analysis in one method and provides options for visualizations. This alleviates many of the existing hurdles in the analysis of genomic interactions.

OriginalsprogEngelsk
TidsskriftBMC Bioinformatics
Vol/bind19
Udgave nummer1
Sider (fra-til)277
ISSN1471-2105
DOI
StatusUdgivet - 31 jul. 2018

ID: 54944323