Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Leveraging both individual-level genetic data and GWAS summary statistics increases polygenic prediction

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Breast Cancer Polygenic Risk Score and Contralateral Breast Cancer Risk

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. HIV infection is associated with type 2 diabetes mellitus

    Publikation: Bidrag til tidsskriftLetterForskningpeer review

  2. Common variants in Alzheimer's disease and risk stratification by polygenic risk scores

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Ioanna Tachmazidou
  • Dániel Süveges
  • Josine L Min
  • Graham R S Ritchie
  • Julia Steinberg
  • Klaudia Walter
  • Valentina Iotchkova
  • Jeremy Schwartzentruber
  • Jie Huang
  • Yasin Memari
  • Shane McCarthy
  • Andrew A Crawford
  • Cristina Bombieri
  • Massimiliano Cocca
  • Aliki-Eleni Farmaki
  • Tom R Gaunt
  • Pekka Jousilahti
  • Marjolein N Kooijman
  • Benjamin Lehne
  • Giovanni Malerba
  • Satu Männistö
  • Angela Matchan
  • Carolina Medina-Gomez
  • Sarah J Metrustry
  • Abhishek Nag
  • Ioanna Ntalla
  • Lavinia Paternoster
  • Nigel W Rayner
  • Cinzia Sala
  • William R Scott
  • Hashem A Shihab
  • Lorraine Southam
  • Beate St Pourcain
  • Michela Traglia
  • Katerina Trajanoska
  • Gialuigi Zaza
  • Weihua Zhang
  • María S Artigas
  • Narinder Bansal
  • Marianne Benn
  • Zhongsheng Chen
  • Petr Danecek
  • Wei-Yu Lin
  • Adam Locke
  • Jian'an Luan
  • Alisa K Manning
  • Antonella Mulas
  • Anne Tybjaerg-Hansen
  • Anette Varbo
  • Børge G Nordestgaard
  • SpiroMeta Consortium
Vis graf over relationer

Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the broader allelic architecture of 12 anthropometric traits associated with height, body mass, and fat distribution in up to 267,616 individuals. We report 106 genome-wide significant signals that have not been previously identified, including 9 low-frequency variants pointing to functional candidates. Of the 106 signals, 6 are in genomic regions that have not been implicated with related traits before, 28 are independent signals at previously reported regions, and 72 represent previously reported signals for a different anthropometric trait. 71% of signals reside within genes and fine mapping resolves 23 signals to one or two likely causal variants. We confirm genetic overlap between human monogenic and polygenic anthropometric traits and find signal enrichment in cis expression QTLs in relevant tissues. Our results highlight the potential of WGS strategies to enhance biologically relevant discoveries across the frequency spectrum.

OriginalsprogEngelsk
TidsskriftAmerican Journal of Human Genetics
Vol/bind100
Udgave nummer6
Sider (fra-til)865-884
Antal sider20
ISSN0002-9297
DOI
StatusUdgivet - 1 jun. 2017

ID: 52188649