TY - JOUR
T1 - White matter diffusivity and its correlations to state measures of psychopathology in male refugees with posttraumatic stress disorder
AU - Wiingaard Uldall, Sigurd
AU - Lundell, Henrik
AU - Baaré, William F C
AU - Roman Siebner, Hartwig
AU - Rostrup, Egill
AU - Carlsson, Jessica
N1 - Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Post-traumatic stress disorder (PTSD) is a heterogenous condition and the underlying neurobiology is still poorly understood. In this study, we tested the hypothesis that PTSD is associated with microstructural changes in white matter (WM) fibre tracts that connect regions involved in emotional processing, memory, attention, and language. Furthermore, we examined how different response patterns to individualized trauma-provoking stimuli related to underlying WM microstructure. Sixty-nine trauma-affected male refugees with PTSD (N = 38) or without PTSD (N = 31) underwent clinical assessments and diffusion-weighted magnetic resonance imaging (DWI) of the whole brain at 3 Tesla. Diffusion tensor metrics were computed from DWI data and used to characterize regional white-matter microstructure. An automated tract segmentation method was used to extract diffusion tensor metrics from subject-based reconstructions of tract segments (ROI), including uncinate fasciculus (UF), cingulum bundle (CB), superior longitudinal fasciculus (SLF) in three subdivisions (SLF I - III), and fibre bundles connecting orbito-frontal cortex to striatum (OF-ST). Outside the scanner we obtained measures of immediate (state) arousal, avoidance and dissociation symptoms assessed in response to auditory exposure to a personal traumatic memory. Using mean FA of the middle part of each ROI, mixed ANOVA revealed a significant interaction between group, ROI and hemisphere. Post-hoc comparisons showed that, relative to refugees without PTSD, refugees with PTSD had lower FA in right CB, left SLF-I, bilateral OF-ST and bilateral SLF-II. Mean FA scaled negatively with avoidance in right CB while mean FA in bilateral UF scaled positively with individual scores reflecting dissociation symptoms. The results support a pathophysiological model of PTSD that implicates limbic structures, prefrontal cortex and striatum. The results also emphasize the need to consider PTSD's multifaceted manifestations when searching for functional-structural relationships.
AB - Post-traumatic stress disorder (PTSD) is a heterogenous condition and the underlying neurobiology is still poorly understood. In this study, we tested the hypothesis that PTSD is associated with microstructural changes in white matter (WM) fibre tracts that connect regions involved in emotional processing, memory, attention, and language. Furthermore, we examined how different response patterns to individualized trauma-provoking stimuli related to underlying WM microstructure. Sixty-nine trauma-affected male refugees with PTSD (N = 38) or without PTSD (N = 31) underwent clinical assessments and diffusion-weighted magnetic resonance imaging (DWI) of the whole brain at 3 Tesla. Diffusion tensor metrics were computed from DWI data and used to characterize regional white-matter microstructure. An automated tract segmentation method was used to extract diffusion tensor metrics from subject-based reconstructions of tract segments (ROI), including uncinate fasciculus (UF), cingulum bundle (CB), superior longitudinal fasciculus (SLF) in three subdivisions (SLF I - III), and fibre bundles connecting orbito-frontal cortex to striatum (OF-ST). Outside the scanner we obtained measures of immediate (state) arousal, avoidance and dissociation symptoms assessed in response to auditory exposure to a personal traumatic memory. Using mean FA of the middle part of each ROI, mixed ANOVA revealed a significant interaction between group, ROI and hemisphere. Post-hoc comparisons showed that, relative to refugees without PTSD, refugees with PTSD had lower FA in right CB, left SLF-I, bilateral OF-ST and bilateral SLF-II. Mean FA scaled negatively with avoidance in right CB while mean FA in bilateral UF scaled positively with individual scores reflecting dissociation symptoms. The results support a pathophysiological model of PTSD that implicates limbic structures, prefrontal cortex and striatum. The results also emphasize the need to consider PTSD's multifaceted manifestations when searching for functional-structural relationships.
KW - Anisotropy
KW - Diffusion Magnetic Resonance Imaging
KW - Diffusion Tensor Imaging/methods
KW - Humans
KW - Male
KW - Refugees
KW - Stress Disorders, Post-Traumatic
KW - White Matter/pathology
UR - http://www.scopus.com/inward/record.url?scp=85123237489&partnerID=8YFLogxK
U2 - 10.1016/j.nicl.2021.102929
DO - 10.1016/j.nicl.2021.102929
M3 - Journal article
C2 - 34998125
SN - 2213-1582
VL - 33
SP - 1
EP - 13
JO - NeuroImage. Clinical
JF - NeuroImage. Clinical
M1 - 102929
ER -