Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Visualization of Nonlinear Classification Models in Neuroimaging - Signed Sensitivity Maps

Publikation: Bidrag til tidsskriftKonferenceartikelForskningpeer review

  1. A Bayesian reanalysis of the effects of hydroxychloroquine and azithromycin on viral carriage in patients with COVID-19

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Optimizing the electric field strength in multiple targets for multichannel transcranial electric stimulation

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Functional and Structural Plasticity Co-express in a Left Premotor Region During Early Bimanual Skill Learning

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Discrete finger sequences are widely represented in human striatum

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Peter Mondrup Rasmussen
  • Tanya Schmah
  • Kristoffer H Madsen
  • Torben E. Lund
  • Grigori Yourganov
  • Stephen C. Strother
  • Lars Kai Hansen
Vis graf over relationer
Classification models are becoming increasing popular tools in the analysis of neuroimaging data sets. Besides obtaining good prediction accuracy, a competing goal is to interpret how the classifier works. From a neuroscientific perspective, we are interested in the brain pattern reflecting the underlying neural encoding of an experiment defining multiple brain states. In this relation there is a great desire for the researcher to generate brain maps, that highlight brain locations of importance to the classifiers decisions. Based on sensitivity analysis, we develop further procedures for model visualization. Specifically we focus on the generation of summary maps of a nonlinear classifier, that reveal how the classifier works in different parts of the input domain. Each of the maps includes sign information, unlike earlier related methods. The sign information allows the researcher to assess in which direction the individual locations influence the classification. We illustrate the visualization procedure on a real data from a simple functional magnetic resonance imaging experiment.
OriginalsprogEngelsk
TidsskriftBIOSIGNALS 2012
Sider (fra-til)254-263
StatusUdgivet - 2012
BegivenhedInternational Conference on Bio-inspired Systems and Signal Processing - Vilamoura, Algarve, Portugal
Varighed: 1 feb. 20124 feb. 2012

Konference

KonferenceInternational Conference on Bio-inspired Systems and Signal Processing
LandPortugal
ByVilamoura, Algarve
Periode01/02/201204/02/2012

Begivenhed

International Conference on Bio-inspired Systems and Signal Processing

01/02/201204/02/2012

Vilamoura, Algarve, Portugal

Begivenhed: Konference

Mest downloadede publikationer

Ingen data tilgængelig

ID: 36847964