Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Validation of structural brain connectivity networks: The impact of scanning parameters

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. On the cortical connectivity in the macaque brain: a comparison of diffusion tractography and histological tracing data

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Cerebellar - premotor cortex interactions underlying visuomotor adaptation

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Directed connectivity between primary and premotor areas underlying ankle force control in young and older adults

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. On the cortical connectivity in the macaque brain: a comparison of diffusion tractography and histological tracing data

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Functional and Structural Plasticity Co-express in a Left Premotor Region During Early Bimanual Skill Learning

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. ActiveAxADD: Toward non-parametric and orientationally invariant axon diameter distribution mapping using PGSE

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Ex vivo diffusion-weighted MRI tractography of the Göttingen minipig limbic system

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Evaluation of the structural connectivity (SC) of the brain based on tractography has mainly focused on the choice of diffusion model, tractography algorithm, and their respective parameter settings. Here, we systematically validate SC derived from a post mortem monkey brain, while varying key acquisition parameters such as the b-value, gradient angular resolution and image resolution. As gold standard we use the connectivity matrix obtained invasively with histological tracers by Markov et al. (2014). As performance metric, we use cross entropy as a measure that enables comparison of the relative tracer labelled neuron counts to the streamline counts from tractography. We find that high angular resolution and high signal-to-noise ratio are important to estimate SC, and that SC derived from low image resolution (1.0³ mm³) are in better agreement with the tracer network, than those derived from high image resolution (0.5³ mm³) or at an even lower image resolution (2.0³ mm³). In contradiction, sensitivity and specificity analyses suggest that if the angular resolution is sufficient, the balanced compromise in which sensitivity and specificity are identical remains 60-64% regardless of the other scanning parameters. Interestingly, the tracer graph is assumed to be the gold standard but by thresholding, the balanced compromise increases to 70-75%. Hence, by using performance metrics based on binarized tracer graphs, one risks losing important information, changing the performance of SC graphs derived by tractography and their dependence of different scanning parameters.

OriginalsprogEngelsk
Artikelnummer116207
TidsskriftNeuroImage
Vol/bind204
Sider (fra-til)1-13
Antal sider13
ISSN1053-8119
DOI
StatusUdgivet - 1 jan. 2020

ID: 57996664