Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Using machine learning for predicting intensive care unit resource use during the COVID-19 pandemic in Denmark

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Infants with congenital heart defects have reduced brain volumes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. SARS-CoV-2 detection using reverse transcription strand invasion based amplification and a portable compact size instrument

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Postoperative complications: an observational study of trends in the United States from 2012 to 2018

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Handling oxygenation targets in ICU patients with COVID-19-Protocol and statistical analysis plan in the HOT-COVID trial

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Low-dose hydrocortisone in patients with COVID-19 and severe hypoxia: the COVID STEROID randomised, placebo-controlled trial

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Use of crystalloids and colloids in Europe per year from 2010 to 2019: Protocol for an international descriptive study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

The COVID-19 pandemic has put massive strains on hospitals, and tools to guide hospital planners in resource allocation during the ebbs and flows of the pandemic are urgently needed. We investigate whether machine learning (ML) can be used for predictions of intensive care requirements a fixed number of days into the future. Retrospective design where health Records from 42,526 SARS-CoV-2 positive patients in Denmark was extracted. Random Forest (RF) models were trained to predict risk of ICU admission and use of mechanical ventilation after n days (n = 1, 2, …, 15). An extended analysis was provided for n = 5 and n = 10. Models predicted n-day risk of ICU admission with an area under the receiver operator characteristic curve (ROC-AUC) between 0.981 and 0.995, and n-day risk of use of ventilation with an ROC-AUC between 0.982 and 0.997. The corresponding n-day forecasting models predicted the needed ICU capacity with a coefficient of determination (R2) between 0.334 and 0.989 and use of ventilation with an R2 between 0.446 and 0.973. The forecasting models performed worst, when forecasting many days into the future (for large n). For n = 5, ICU capacity was predicted with ROC-AUC 0.990 and R2 0.928, and use of ventilator was predicted with ROC-AUC 0.994 and R2 0.854. Random Forest-based modelling can be used for accurate n-day forecasting predictions of ICU resource requirements, when n is not too large.

OriginalsprogEngelsk
Artikelnummer18959
TidsskriftScientific Reports
Vol/bind11
Udgave nummer1
Sider (fra-til)18959
ISSN2045-2322
DOI
StatusUdgivet - 23 sep. 2021

Bibliografisk note

© 2021. The Author(s).

ID: 67997895