Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Using electronic patient records to discover disease correlations and stratify patient cohorts

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Choice history effects in mice and humans improve reward harvesting efficiency

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Ergodicity-breaking reveals time optimal decision making in humans

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Metabolic regulation in progression to autoimmune diabetes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Long-term testosterone undecanoate treatment in the elderly testosterone deficient male - an observational cohort study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Bilateral oophorectomy and rate of colorectal cancer: A prospective cohort study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Vitamin D supplementation improves fasting insulin levels and HDL cholesterol in infertile men

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer
Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracting phenotype information from the free-text in such records we demonstrate that we can extend the information contained in the structured record data, and use it for producing fine-grained patient stratification and disease co-occurrence statistics. The approach uses a dictionary based on the International Classification of Disease ontology and is therefore in principle language independent. As a use case we show how records from a Danish psychiatric hospital lead to the identification of disease correlations, which subsequently can be mapped to systems biology frameworks.
OriginalsprogEngelsk
TidsskriftP L o S Computational Biology
Vol/bind7
Udgave nummer8
Sider (fra-til)e1002141
Antal sider10
ISSN1553-734X
DOI
StatusUdgivet - 1 aug. 2011

ID: 32767485