Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Using connectomics for predictive assessment of brain parcellations

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Mapping cortico-subcortical sensitivity to 4 Hz amplitude modulation depth in human auditory system with functional MRI

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Recording brain responses to TMS of primary motor cortex by EEG - utility of an optimized sham procedure

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. On the reconstruction of magnetic resonance current density images of the human brain: Pitfalls and perspectives

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Uncovering Cortical Units of Processing From Multi-Layered Connectomes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Editorial: Computational Neuroimage Analysis Tools for Brain (Diseases) Biomarkers

    Publikation: Bidrag til tidsskriftLederForskningpeer review

  3. Axonal T2 estimation using the spherical variance of the strongly diffusion-weighted MRI signal

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Prediction of Early Symptom Remission in Two Independent Samples of First-Episode Psychosis Patients Using Machine Learning

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

The organization of the human brain remains elusive, yet is of great importance to the mechanisms of integrative brain function. At the macroscale, its structural and functional interpretation is conventionally assessed at the level of cortical units. However, the definition and validation of such cortical parcellations are problematic due to the absence of a true gold standard. We propose a framework for quantitative evaluation of brain parcellations via statistical prediction of connectomics data. Specifically, we evaluate the extent in which the network representation at the level of cortical units (defined as parcels) accounts for high-resolution brain connectivity. Herein, we assess the pertinence and comparative ranking of ten existing parcellation atlases to account for functional (FC) and structural connectivity (SC) data based on data from the Human Connectome Project (HCP), and compare them to data-driven as well as spatially-homogeneous geometric parcellations including geodesic parcellations with similar size distributions as the atlases. We find substantial discrepancy in parcellation structures that well characterize FC and SC and differences in what well represents an individual's functional connectome when compared against the FC structure that is preserved across individuals. Surprisingly, simple spatial homogenous parcellations generally provide good representations of both FC and SC, but are inferior when their within-parcellation distribution of individual parcel sizes is matched to that of a valid atlas. This suggests that the choice of fine grained and coarse representations used by existing atlases are important. However, we find that resolution is more critical than the exact border location of parcels.

OriginalsprogEngelsk
Artikelnummer118170
TidsskriftNeuroImage
Vol/bind238
Sider (fra-til)1-18
Antal sider18
ISSN1053-8119
DOI
StatusUdgivet - sep. 2021

ID: 66135360