Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Ultrasonic 3-D vector flow method for quantitative in vivo peak velocity and flow rate estimation

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Portable Vector Flow Imaging Compared with Spectral Doppler Ultrasonography

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Automatic Detection of B-lines in In-Vivo Lung Ultrasound

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Real-Time 2-D Phased Array Vector Flow Imaging

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Noninvasive Estimation of Pressure Changes Using 2-D Vector Velocity Ultrasound: An Experimental Study With In Vivo Examples

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. A Vector Flow Imaging Method for Portable Ultrasound Using Synthetic Aperture Sequential Beamforming

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Gastrointestinal Applications of Iodine Quantification Using Dual-Energy CT: A Systematic Review

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

  2. Evaluation of inflammatory lesions over 2 years in facioscapulohumeral muscular dystrophy

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Flow Complexity Estimation in Dysfunctional Arteriovenous Dialysis Fistulas using Vector Flow Imaging

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Current clinical ultrasound systems are limited to show blood flow movement in either 1-D or 2-D. In this paper, a method for estimating 3-D vector velocities in a plane using the Transverse Oscillation (TO) method, a 32 x 32 element matrix array, and the experimental ultrasound scanner SARUS is presented. The aim of this paper is to estimate precise flow rates and peak velocities derived from 3-D vector flow estimates. The emission sequence provides 3-D vector flow estimates at up to 1.145 frames per second in a plane, and was used to estimate 3-D vector flow in a cross sectional image plane. The method is validated in two phantom studies, where flow rates are measured in a flow-rig, providing a constant parabolic flow, and in a straight-vessel phantom (ø = 8 mm) connected to a flow pump capable of generating time varying waveforms. Flow rates are estimated to be 82.1 ± 2.8 L/min in the flow-rig compared with the expected 79.8 L/min, and to 2.68 ± 0.04 mL/stroke in the pulsating environment compared with the expected 2.57 ± 0.08 mL/stroke. Flow rates estimated in the common carotid artery of a healthy volunteer are compared with MRI measured flow rates using a 1-D through-plane velocity sequence. Mean flow rates were 333 ± 31 mL/min for the presented method and 346 ± 2 mL/min for the MRI measurements.

OriginalsprogEngelsk
TidsskriftI E E E Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Vol/bind64
Udgave nummer3
Sider (fra-til)544-554
ISSN0885-3010
DOI
StatusUdgivet - 2017

ID: 49812355