Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Translating polygenic risk scores for clinical use by estimating the confidence bounds of risk prediction

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Capsid-like particles decorated with the SARS-CoV-2 receptor-binding domain elicit strong virus neutralization activity

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Common variants in Alzheimer's disease and risk stratification by polygenic risk scores

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Ultraviolet radiation drives mutations in a subset of mucosal melanomas

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Distinct patterns of within-host virus populations between two subgroups of human respiratory syncytial virus

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Genetic, Clinical, and Sociodemographic Factors Associated With Stimulant Treatment Outcomes in ADHD

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Genetic regulation of spermine oxidase activity and cancer risk: a Mendelian randomization study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Regeneron Genetics Center
Vis graf over relationer

A promise of genomics in precision medicine is to provide individualized genetic risk predictions. Polygenic risk scores (PRS), computed by aggregating effects from many genomic variants, have been developed as a useful tool in complex disease research. However, the application of PRS as a tool for predicting an individual's disease susceptibility in a clinical setting is challenging because PRS typically provide a relative measure of risk evaluated at the level of a group of people but not at individual level. Here, we introduce a machine-learning technique, Mondrian Cross-Conformal Prediction (MCCP), to estimate the confidence bounds of PRS-to-disease-risk prediction. MCCP can report disease status conditional probability value for each individual and give a prediction at a desired error level. Moreover, with a user-defined prediction error rate, MCCP can estimate the proportion of sample (coverage) with a correct prediction.

OriginalsprogEngelsk
Artikelnummer5276
TidsskriftNature Communications
Vol/bind12
Udgave nummer1
Sider (fra-til)5276
DOI
StatusUdgivet - 6 sep. 2021

ID: 67620766