Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital

Transcriptome profiling revealed early vascular smooth muscle cell gene activation following focal ischemic stroke in female rats - comparisons with males

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review


  1. Assessment of branch point prediction tools to predict physiological branch points and their alteration by variants

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Analysis of the Phenotypes in the Rett Networked Database

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Gene editing in the context of an increasingly complex genome

    Publikation: Bidrag til tidsskriftReviewpeer review

  4. Strategy for efficient generation of numerous full-length cDNA clones of classical swine fever virus for haplotyping

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. A correction for sample overlap in genome-wide association studies in a polygenic pleiotropy-informed framework

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Identifying New Antimigraine Targets: Lessons from Molecular Biology

    Publikation: Bidrag til tidsskriftReviewpeer review

  2. Oral rimegepant for migraine prevention

    Publikation: Bidrag til tidsskriftKommentar/debatForskningpeer review

Vis graf over relationer

BACKGROUND: Women account for 60% of all stroke deaths and are more often permanently disabled than men, despite their higher observed stroke incidence. Considering the clinical population affected by stroke, an obvious drawback is that many pre-clinical and clinical studies only investigate young males. To improve therapeutic translation from bench to bedside, we believe that it is advantageous to include both sexes in experimental models of stroke. The aims of this study were to identify early cerebral vascular responses to ischemic stroke in females, compare the differential gene expression patterns with those seen in males, and identify potential new therapeutic targets.

RESULTS: Transient middle cerebral artery occlusion (tMCAO) was used to induce stroke in both female and male rats, the middle cerebral arteries (MCAs) were isolated 3 h post reperfusion and RNA was extracted. Affymetrix whole transcriptome expression profiling was performed on female (n = 12) MCAs to reveal differentially expressed genes. In total, 1076 genes had an increased expression and 879 genes a decreased expression in the occluded MCAs as compared with the control MCAs from female rats. An enrichment of genes related to apoptosis, regulation of transcription, protein autophosphorylation, inflammation, oxidative stress, and tissue repair and recovery were seen in the occluded MCA. The high expression genes chosen for qPCR verification (Adamts4, Olr1, JunB, Fosl1, Serpine1, S1pr3, Ccl2 and Socs3) were all shown to be upregulated in the same manner in both females and males after tMCAO (p < 0.05; n = 23). When comparing the differentially expressed genes in female MCAs (occluded and non-occluded) with our previous findings in males after tMCAO, a total of 297 genes overlapped (all groups had 32 genes in common).

CONCLUSIONS: The cascades of processes initiated in the vasculature following reperfusion are complex. Dynamic gene expression alterations were observed in the occluded MCAs, and to a less pronounced degree in the non-occluded MCAs. Dysregulation of inflammation and blood-brain barrier breakdown are possible pharmacological targets. The sample of genes (< 1% of the differentially expressed genes) validated for this microarray did not reveal any sex differences. However, sex differences might be observed for other gene targets.

TidsskriftBMC Genomics
Udgave nummer1
Sider (fra-til)883
StatusUdgivet - 9 dec. 2020
Eksternt udgivetJa

ID: 61506372