The Performance of Machine Learning Approaches for Attenuation Correction of PET in Neuroimaging: A Meta-Analysis

Raymond Confidence, Michael T Jurkiewicz, Akin Orunmuyi, Linshan Liu, Michael Oluwaseun Dada, Claes N Ladefoged, Jarmo Teuho, Udunna C Anazodo*

*Corresponding author af dette arbejde


PURPOSE: This systematic review provides a consensus on the clinical feasibility of machine learning (ML) methods for brain PET attenuation correction (AC). Performance of ML-AC were compared to clinical standards.

METHODS: Two hundred and eighty studies were identified through electronic searches of brain PET studies published between January 1, 2008, and August 1, 2022. Reported outcomes for image quality, tissue classification performance, regional and global bias were extracted to evaluate ML-AC performance. Methodological quality of included studies and the quality of evidence of analysed outcomes were assessed using QUADAS-2 and GRADE, respectively.

RESULTS: A total of 19 studies (2371 participants) met the inclusion criteria. Overall, the global bias of ML methods was 0.76 ± 1.2%. For image quality, the relative mean square error (RMSE) was 0.20 ± 0.4 while for tissues classification, the Dice similarity coefficient (DSC) for bone/soft tissue/air were 0.82 ± 0.1 / 0.95 ± 0.03 / 0.85 ± 0.14.

CONCLUSIONS: In general, ML-AC performance is within acceptable limits for clinical PET imaging. The sparse information on ML-AC robustness and its limited qualitative clinical evaluation may hinder clinical implementation in neuroimaging, especially for PET/MRI or emerging brain PET systems where standard AC approaches are not readily available.

TidsskriftJournal of Neuroradiology
Udgave nummer3
Sider (fra-til)315-326
Antal sider12
StatusUdgivet - maj 2023


Dyk ned i forskningsemnerne om 'The Performance of Machine Learning Approaches for Attenuation Correction of PET in Neuroimaging: A Meta-Analysis'. Sammen danner de et unikt fingeraftryk.