Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

The influence of direct and indirect fibroblast cell contact on human myogenic cell behavior and gene expression in vitro

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Physiological responses of human skeletal muscle to acute blood flow restricted exercise assessed by multimodal MRI

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Reply to Dutheil et al

    Publikation: Bidrag til tidsskriftKommentar/debatForskningpeer review

  3. Regional collagen turnover and composition of the human patellar tendon

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. UTE T2* mapping of tendinopathic patellar tendons: an MRI reproducibility study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Age-related myofiber atrophy in old mice is reversed by ten weeks voluntary high-resistance wheel running

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Insulin-stimulated glucose uptake partly relies on p21-activated kinase (PAK)2, but not PAK1, in mouse skeletal muscle

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. No detectable remodelling in adult human menisci: an analysis based on the C14 bomb pulse

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Underpinning skeletal muscle plasticity is the interplay between many cell types, of which fibroblasts are emerging as potent players, both negatively in the development of fibrosis but also positively in stimulating muscle repair through enhancing myogenesis. The mechanisms behind this interaction however remain unknown. To investigate this, waste hamstring muscle tissue was obtained from eight healthy young men undergoing reconstructive anterior cruciate ligament surgery and primary myoblasts and fibroblasts were isolated. Myoblasts were cultured alone or with fibroblasts, either in direct or indirect contact (separated by an insert with a permeable membrane). The myogenesis parameters proliferation, differentiation, and fusion were determined from immunostained cells, while, in replicate samples, gene expression levels of GAPDH, Ki67, Pax7, MyoD, myogenin, myomaker, MHC-Iβ, TCF7L2, COL1A1, and p16 were determined by RT-PCR. We found only trends for an influence of skeletal muscle fibroblasts on myogenic cell proliferation and differentiation. While greater mRNA levels of GAPDH, Pax7, MyoD, myogenin, and MHC-Iβ were observed in myogenic cells in indirect contact with fibroblasts (insert) when compared with cells cultured alone, a similar effect of an empty insert was also observed. In conclusion we find very little influence of skeletal muscle fibroblasts on myoblasts derived from the same tissue, although it cannot be excluded that a different outcome would be seen under less optimal myogenic growth conditions.NEW & NOTEWORTHY Using passage one primary myoblasts and fibroblasts isolated from human skeletal muscle, we found only a trend for an effect of skeletal muscle fibroblasts on myogenic cell proliferation and differentiation. This is contrary to previous reports and raises the possibility that fibroblasts of different tissue origins exert distinct roles.

OriginalsprogEngelsk
TidsskriftJournal of Applied Physiology
Vol/bind127
Udgave nummer2
Sider (fra-til)342-355
Antal sider14
ISSN0161-7567
DOI
StatusUdgivet - 1 aug. 2019

ID: 59361877