Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

The contribution of body composition, substrates, and hormones to the variability in energy expenditure and substrate utilization in premenopausal women

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Body Mass Index, Triglycerides, and Risk of Acute Pancreatitis: A Population-Based Study of 118 000 Individuals

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Effect of the incretin hormones on the endocrine pancreas in end-stage renal disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Gene Expression in Granulosa Cells From Small Antral Follicles From Women With or Without Polycystic Ovaries

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Hydroxylated Long-Chain Acylcarnitines are Biomarkers of Mitochondrial Myopathy

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Investigating Intestinal Glucagon after Roux-en-Y Gastric Bypass Surgery

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer
Twenty-four-hour energy expenditure and substrate use were measured by indirect calorimetry in respiration chambers on a fixed physical program and related to body composition and plasma concentrations of various substrates and thermogenic hormones. Fifty premenopausal women with a wide range of body weight were examined in the follicular menstrual phase under weight stable conditions. Most of the variance in the sleeping energy expenditure (82%) was accounted for by two covariates, lean body mass (75%, P less than 0.0001), and fat mass (7%, P less than 0.0001). An additional 6% of the variance in sleeping energy expenditure was accounted for by plasma androstenedione concentration (4%, P = 0.0005) and by free T3 index (2%, P = 0.03). Thus physiological variation among individuals in plasma androstenedione concentration may result in a difference in energy expenditure of 908 kJ/day and the corresponding variation in free T3 index may result in a difference between individuals of 594 kJ/day. Fifty four percent of the variation in carbohydrate oxidation rates was accounted for by 24-h energy balance, and by plasma concentrations of insulin, nonesterified fatty acids, and estradiol. Waist circumference, plasma nonesterified fatty acids, and estradiol concentrations explained 49% of the variance in 24-h lipid oxidation. An obese subgroup of women (n = 27) had significantly higher 24-h energy expenditure, lipid, and carbohydrate oxidation rates than an age-matched normal weight group (n = 16), but the entire group difference in energy expenditure was explained by differences in body composition. We conclude that physiological variations in plasma androstenedione and T3 concentrations contribute to the interindividual variance in energy expenditure of women, and their role is not different in obese women. A positive energy balance and increased insulin action may be mediators of the higher carbohydrate oxidation in obesity, whereas an increased substrate availability seems to bring about the increased lipid oxidation.
OriginalsprogEngelsk
TidsskriftJournal of Clinical Endocrinology and Metabolism
Vol/bind74
Udgave nummer2
Sider (fra-til)279-86
Antal sider8
ISSN0021-972X
StatusUdgivet - feb. 1992

ID: 38931787