Abstract
The Euler number and the connectivity of an arbitrary object is defined, and it is illustrated why the connectivity of an n-dimensional object cannot be estimated in an (n-1)-dimensional section. The disector--principle for 3-D counting of the Euler--events is illustrated in cancellous bone. The correct handling for unbiased counting of events at artificial edges is outlined. A nomogram for predicting the precision of an estimate is provided.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Bone |
Vol/bind | 14 |
Udgave nummer | 3 |
Sider (fra-til) | 217-22 |
Antal sider | 6 |
ISSN | 8756-3282 |
DOI | |
Status | Udgivet - 1 maj 1993 |
Udgivet eksternt | Ja |