TY - JOUR
T1 - The Combination of Low-Frequency Ultrasound and Antibiotics Improves the Killing of In Vitro Staphylococcus aureus and Pseudomonas aeruginosa Biofilms
AU - Kvich, Lasse
AU - Christensen, Mads H
AU - Pierchala, Malgorzata K
AU - Astafiev, Konstantin
AU - Lou-Moeller, Rasmus
AU - Bjarnsholt, Thomas
PY - 2022/10/28
Y1 - 2022/10/28
N2 - Due to an increase in underlying predisposing factors, chronic wounds have become an increasing burden on healthcare systems worldwide. Chronic infections often contain biofilm-forming bacteria, which are challenging to eradicate due to increased antibiotic tolerance; thus, new and improved therapeutic strategies are warranted. One such strategy is the combination of ultrasound and antibiotics. Therefore, this study aimed to investigate the combinatory effects of low-frequency (50 kHz) ultrasound delivered by specially designed ultrasound patches using flexible piezoelectric material, PiezoPaint™, in combination with antibiotics against biofilms with Staphylococcus aureus and Pseudomonas aeruginosa. The reduction in viable cells in S. aureus and P. aeruginosa biofilms was evaluated post-treatment with fusidic acid, clindamycin, ciprofloxacin, and colistin in combination with ultrasound treatment. Two-hour ultrasound treatment significantly increased the bactericidal effect of all four antibiotics, resulting in a 96−98% and 90−93% reduction in P. aeruginosa and S. aureus, respectively. In addition, an additive effect was observed when extending treatment to 4 h, resulting in >99% and 95−97% reduction in P. aeruginosa and S. aureus, respectively. These results contrasted the lack of effect observed when treating filter-biofilms with antibiotics alone. The combined effect of ultrasound and antibiotic treatment resulted in a synergistic effect, reducing the viability of the clinically relevant pathogens S. aureus and P. aeruginosa. The modularity of the specially designed patches intended for topical treatment holds promising applications as a supplement in chronic wound therapy. Further studies are warranted with clinically isolated strains and other clinically relevant antibiotics before proceeding to studies where safety and applicability are investigated.
AB - Due to an increase in underlying predisposing factors, chronic wounds have become an increasing burden on healthcare systems worldwide. Chronic infections often contain biofilm-forming bacteria, which are challenging to eradicate due to increased antibiotic tolerance; thus, new and improved therapeutic strategies are warranted. One such strategy is the combination of ultrasound and antibiotics. Therefore, this study aimed to investigate the combinatory effects of low-frequency (50 kHz) ultrasound delivered by specially designed ultrasound patches using flexible piezoelectric material, PiezoPaint™, in combination with antibiotics against biofilms with Staphylococcus aureus and Pseudomonas aeruginosa. The reduction in viable cells in S. aureus and P. aeruginosa biofilms was evaluated post-treatment with fusidic acid, clindamycin, ciprofloxacin, and colistin in combination with ultrasound treatment. Two-hour ultrasound treatment significantly increased the bactericidal effect of all four antibiotics, resulting in a 96−98% and 90−93% reduction in P. aeruginosa and S. aureus, respectively. In addition, an additive effect was observed when extending treatment to 4 h, resulting in >99% and 95−97% reduction in P. aeruginosa and S. aureus, respectively. These results contrasted the lack of effect observed when treating filter-biofilms with antibiotics alone. The combined effect of ultrasound and antibiotic treatment resulted in a synergistic effect, reducing the viability of the clinically relevant pathogens S. aureus and P. aeruginosa. The modularity of the specially designed patches intended for topical treatment holds promising applications as a supplement in chronic wound therapy. Further studies are warranted with clinically isolated strains and other clinically relevant antibiotics before proceeding to studies where safety and applicability are investigated.
KW - antibiotics
KW - biofilm
KW - flexible piezoelectric material
KW - low-frequency ultrasound
KW - Pseudomonas aeruginosa
KW - Staphyloccocus aureus
UR - http://www.scopus.com/inward/record.url?scp=85141808017&partnerID=8YFLogxK
U2 - 10.3390/antibiotics11111494
DO - 10.3390/antibiotics11111494
M3 - Journal article
C2 - 36358151
SN - 2079-6382
VL - 11
SP - 1
EP - 12
JO - Antibiotics
JF - Antibiotics
IS - 11
M1 - 1494
ER -