Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Taurine, glutathione and bioenergetics

Publikation: Bidrag til tidsskriftTidsskriftartikelFormidling

DOI

  1. Necrotizing Soft-Tissue Infections: Clinical Features and Diagnostic Aspects

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. The Risk of Thromboembolism in Users of Antidepressants and Antipsychotics

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Vitamin D, Cardiovascular Disease and Risk Factors

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Microbial biofilms and adverse reactions to gel fillers used in cosmetic surgery

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Taurine and regulation of mitochondrial metabolism

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Bilio-enteric flow and plasma concentrations of bile acids after gastric bypass and sleeve gastrectomy

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. An evaluation of total 25-hydroxyvitamin D assay standardization: Where are we today?

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Preliminary report: Measurement of apixaban and rivaroxaban in plasma from bleeding patients

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer
Biochemistry textbook presentations of bioenergetics and mitochondrial function normally focus on the chemiosmotic theory with introduction of the tricarboxylic acid cycle and the electron transport chain, the proton and electrical gradients and subsequent oxidative phosphorylation and ATP-production by ATP synthase. The compound glutathione (GSH) is often mentioned in relation to mitochondrial function, primarily for a role as redox scavenger. Here we argue that its role as redox pair with oxidised glutathione (GSSG) is pivotal with regard to controlling the electrical or redox gradient across the mitochondrial inner-membrane. The very high concentration of taurine in oxidative tissue has recently led to discussions on the role of taurine in the mitochondria, e.g. with taurine acting as a pH buffer in the mitochondrial matrix. A very important consequence of the slightly alkaline pH is the fact that the NADH/NAD(+) redox pair can be brought in redox equilibrium with the GSH redox pair GSH/GSSG.An additional consequence of having GSH as redox buffer is the fact that from the pH dependence of its redox potential, it becomes possible to explain that the mitochondrial membrane potential has been observed to be independent of the matrix pH. Finally a simplified model for mitochondrial oxidation is presented with introduction of GSH as redox buffer to stabilise the electrical gradient, and taurine as pH buffer stabilising the pH gradient, but simultaneously establishing the equilibrium between the NADH/NAD(+) redox pair and the redox buffer pair GSH/GSSG.
OriginalsprogEngelsk
BogserieAdvances in Experimental Medicine and Biology
Vol/bind776
Sider (fra-til)3-12
Antal sider10
ISSN0065-2598
DOI
StatusUdgivet - 2013

ID: 41932662